14£®ÎªÁ˽âijµØÇøÄ³ÖÖÅ©²úÆ·µÄÄê²úÁ¿x£¨µ¥Î»£º¶Ö£©¶Ô¼Û¸ñy£¨µ¥Î»£ºÇ§Ôª/¶Ö£©ºÍÀûÈózµÄÓ°Ï죬¶Ô½üÎåÄê¸ÃÅ©²úÆ·µÄÄê²úÁ¿ºÍ¼Û¸ñͳ¼ÆÈç±í£º
x12345
y76542
£¨1£©Çóy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x-$\stackrel{¡Ä}{a}$£»
£¨2£©Èôÿ¶Ö¸ÃÅ©²úÆ·µÄ³É±¾Îª2ǧԪ£¬¼ÙÉè¸ÃÅ©²úÆ·¿ÉÈ«²¿Âô³ö£¬Ô¤²âµ±Äê²úÁ¿Îª¶àÉÙʱ£¬ÄêÀûÈózÈ¡µ½×î´óÖµ£¿£¨±£ÁôÁ½Î»Ð¡Êý£©
²Î¿¼¹«Ê½£º$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$£®

·ÖÎö £¨1£©ÓɱíÖеÄÊý¾Ý·Ö±ð¼ÆË㣬¼´¿Éд³öÏßÐԻع鷽³Ì£»
£¨2£©z=x£¨8.4-1.2x£©=-1.2x2+6.4x£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©$\overline{x}$=3£¬$\overline{y}$=4.8
¡à$\stackrel{¡Ä}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{60-5¡Á3¡Á4.8}{55-5¡Á{3}^{2}}$=-1.2£¬$\stackrel{¡Ä}{a}$=$\overline{y}$-$\stackrel{¡Ä}{b}$$\overline{x}$=8.4£®
¡ày¹ØÓÚxµÄÏßÐԻع鷽³Ì$\stackrel{¡Ä}{y}$=-1.2x+8.4£»
£¨2£©z=x£¨8.4-1.2x£©=-1.2x2+6.4x£¬¡àx=2.67ʱ£¬ÄêÀûÈózÈ¡µ½×î´óÖµ£®

µãÆÀ ±¾Ì⿼²éÁËÇóÏßÐԻع鷽³ÌµÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÀûÓÃÏßÐԻع鷽³ÌÔ¤²âÉú²úÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖª$\overrightarrow{m}$=£¨2$\sqrt{3}$£¬1£©£¬$\overrightarrow{n}$=£¨cos2$\frac{A}{2}$£¬sinA£©£¬A£¬B£¬CÊÇ¡÷ABCµÄÄڽǣ®
£¨1£©µ±A¡Ê£¨0£¬$\frac{¦Ð}{2}$£©Ê±£¬Çó|$\overrightarrow{n}$|µÄȡֵ·¶Î§£»
£¨2£©ÈôC=$\frac{2¦Ð}{3}$£¬AB=3£¬µ±$\overrightarrow{m}$•$\overrightarrow{n}$È¡×î´óֵʱ£¬ÇóAµÄ´óС¼°±ßBCµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®º¯Êý$y=Asin£¨¦Øx+ϕ£©£¨A£¾0£¬¦Ø£¾0£¬|ϕ|£¼\frac{¦Ð}{2}£©$ÔÚͬһ¸öÖÜÆÚÄÚ£¬µ±x=$\frac{¦Ð}{4}$ʱyÈ¡×î´óÖµ2£¬µ±x=$\frac{7¦Ð}{12}$ʱ£¬yÈ¡×îСֵ-2£®
£¨1£©Çóº¯ÊýµÄ½âÎöʽy=f£¨x£©£®
£¨2£©Èôx¡Ê[0£¬2¦Ð]£¬ÇÒf£¨x£©=$\sqrt{3}$ʱ£¬ÇóxµÄÖµ£»
£¨3£©Èôº¯Êýf£¨x£©Âú×ã·½³Ìf£¨x£©=a£¨1£¼a£¼2£©£¬ÇóÔÚ[0£¬2¦Ð]ÄÚµÄËùÓÐʵÊý¸ùÖ®ºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¡¶ÖйúºÃÉùÒô¡·Ã¿ÆÚ½ÚÄ¿ÓÐËÄλµ¼Ê¦A£¬B£¬C£¬D²ÎÓ룮Æä¹æÔòÊǵ¼Ê¦×øÔÚÌØ¶¨µÄ×ùÒÎÉÏÇÒ±³¶Ô¸èÊÖÈÏÕæÇãÌýÆäÑݳª£¬Èôÿλ²ÎÈüÑ¡ÊÖÔÚÑݳªÍê֮ǰÓе¼Ê¦ÐÀÉͶøÎªÆäתÉí£¬Ôò¸ÃÑ¡ÊÖ¿ÉÒÔÑ¡Ôñ¼ÓÈëΪÆäתÉíµÄµ¼Ê¦µÄÍŶÓÖнÓÊÜÖ¸µ¼ÑµÁ·£»Èô³öÏÖ¶àλµ¼Ê¦ÎªÍ¬Ò»Î»Ñ§Ô±×ªÉí£¬ÔòÑ¡ÔñȨ·´×ª£¬½»ÓÉѧԱ×ÔÐÐÑ¡Ôñµ¼Ê¦£¬ÒÑ֪ijÆÚ¡¶ÖйúºÃÉùÒô¡·ÖУ¬8λѡÊÖ³ªÍêºó£¬ËÄλµ¼Ê¦ÎªÆäתÉíµÄÇé¿öͳ¼ÆÈçÏ£º£¨¼ÇתÉíΪT£©
ÏÖ´ÓÕâ8λѡÊÖÖÐËæ»ú³éÈ¡Á½ÈË¿¼²éËûÃÇÑݳªÍêºóµ¼Ê¦µÄתÉíÇé¿ö£®
£¨1£©ÇóÑ¡³öµÄÁ½ÈË»ñµÃµ¼Ê¦ÎªÆäתÉíµÄÈ˴κÍΪ4µÄ¸ÅÂÊ£»
£¨2£©¼ÇÑ¡³öµÄ2ÈË»ñµÃµ¼Ê¦ÎªÆäתÉíµÄÈË´ÎÖ®ºÍΪX£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍûE£¨X£©
       µ¼Ê¦
Ñ¡ÊÖ
ABCD
1TT
2TTTT
3T
4TT
5TTT
6TT
7TTTT
8TTT

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªF1¡¢F2·Ö±ðÊÇÍÖÔ²EµÄ×óÓÒ½¹µã£¬AΪ×󶥵㣬PΪÍÖÔ²EÉϵĵ㣬ÒÔPF1Ϊֱ¾¶µÄÔ²¾­¹ýF2£¬Èô$|{P{F_2}}|=\frac{1}{4}|{A{F_2}}|$£¬ÔòÍÖÔ²EµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{1}{2}$C£®$\frac{\sqrt{3}}{2}$D£®$\frac{3}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®¶Ôa£¾0£¬b£¾0£¬a+b¡Ý2$\sqrt{ab}$£®Èôx+$\frac{1}{x}$¡Ý2$\sqrt{x•\frac{1}{x}}$£¬Ôòx+$\frac{1}{x}$¡Ý2£¬ÒÔÉÏÍÆÀí¹ý³ÌÖеĴíÎóΪ£¨¡¡¡¡£©
A£®´óǰÌáB£®Ð¡Ç°ÌáC£®½áÂÛD£®ÎÞ´íÎó

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èôa£¬b£¬c¶¼´óÓÚ0£¬ÔòÖ±Ïßax+by+c=0µÄͼÏó´óÖÂÊÇͼÖе썡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Èô¼¯ºÏA={x|x2+x-2£¼0}£¬¼¯ºÏ$B=\left\{{x|\frac{1}{x^2}£¾1}\right\}$£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®£¨-1£¬2£©B£®£¨-¡Þ£¬-1£©¡È£¨1£¬+¡Þ£©C£®£¨-1£¬1£©D£®£¨-1£¬0£©¡È£¨0£¬1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑ֪ij¸ö¼¸ºÎÌåµÄÕýÊÓͼ¡¢²àÊÓͼ¡¢¸©ÊÓͼ¾ùΪÓÒͼµÄÐÎ×´£¬¸ù¾ÝͼÖбê³öµÄ³ß´ç£¨Í¼ÖдóÕý·½Ðα߳¤Îª2a£©£¬¿ÉµÃÕâ¸ö¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{20}{3}{a^3}$B£®7a3C£®$2\sqrt{2}{a^3}$D£®5a3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸