精英家教网 > 高中数学 > 题目详情
19.对a>0,b>0,a+b≥2$\sqrt{ab}$.若x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$,则x+$\frac{1}{x}$≥2,以上推理过程中的错误为(  )
A.大前提B.小前提C.结论D.无错误

分析 演绎推理是由一般到特殊的推理,是一种必然性的推理,演绎推理得到的结论不一定是正确的,这要取决与前提是否真实和推理的形式是否正确,演绎推理一般模式是“三段论”形式,即大前提小前提和结论.

解答 解:∵a>0,b>0,a+b≥2$\sqrt{ab}$,
这是基本不等式的形式,注意到基本不等式的使用条件,a,b都是正数,
x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$是小前提,没有写出x的取值范围,
∴本题中的小前提有错误,
故选B.

点评 本题考查演绎推理的意义,演绎推理是由一般性的结论推出特殊性命题的一种推理模式,演绎推理的前提与结论之间有一种蕴含关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设函数f(x)=$\frac{1}{3}$xlnx(x>0),则y=f(x)(  )
A.在区间($\frac{1}{e}$,1),(1,e)内均有零点
B.在区间($\frac{1}{e}$,1),(1,e)内均无零点
C.在区间($\frac{1}{e}$,1)内有零点,在区间(1,e内无零点
D.在区间($\frac{1}{e}$,1)内无零点,在区间(1,e)内有零点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若向量$\overrightarrow{a}$=(1,λ,2),$\overrightarrow{b}$=(2,-1,2),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则λ等于6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列结论错误的个数是(  )
①“a=0”是“复数a+bi(a,b∈R)为纯虚数”的必要不充分条件;
②命题p:?x∈[0,1],ex≥1,命题q:?x∈R,x2+x+1<0,则p∨q为真;
③“若am2<bm2,则a<b”的逆命题为真命题;
④若p∨q为假命题,则p、q均为假命题.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为了解某地区某种农产品的年产量x(单位:吨)对价格y(单位:千元/吨)和利润z的影响,对近五年该农产品的年产量和价格统计如表:
x12345
y76542
(1)求y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x-$\stackrel{∧}{a}$;
(2)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少时,年利润z取到最大值?(保留两位小数)
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.实数m取何值时,复数z=(m2-5m+6)+(m2-3m)i是
(1)零;(2)虚数;(3)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=3x2-3lnx的单调递减区间是$(0,\frac{{\sqrt{2}}}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知△ABC中,a=1,B=45°,△ABC的面积为2,则三角形外接圆的半径为(  )
A.$2\sqrt{3}$B.$\frac{{5\sqrt{2}}}{2}$C.$4\sqrt{2}$D.$3\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)不用计算器计算:$2{log_3}2-{log_3}\frac{32}{9}+{log_3}8-{5^{{{log}_5}3}}$
(2)如果f(x-$\frac{1}{x}$)=(x+$\frac{1}{x}$)2,求f(x+1).

查看答案和解析>>

同步练习册答案