精英家教网 > 高中数学 > 题目详情
9.(1)不用计算器计算:$2{log_3}2-{log_3}\frac{32}{9}+{log_3}8-{5^{{{log}_5}3}}$
(2)如果f(x-$\frac{1}{x}$)=(x+$\frac{1}{x}$)2,求f(x+1).

分析 (1)根据对数的运算性质计算即可;(2)求出f(x)的解析式,从而求出f(x+1)的解析式即可.

解答 解:(1)原式=log34-log3$\frac{32}{9}$+log38-3
=log3(4×$\frac{9}{32}$×8)-3
=log39-3=-1;
(2)f(x-$\frac{1}{x}$)=${(x-\frac{1}{x})}^{2}$+4,
故f(x)=x2+4,
故f(x+1)=(x+1)2+x2+2x+5.

点评 本题考查了对数的运算,考查求函数的解析式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.对a>0,b>0,a+b≥2$\sqrt{ab}$.若x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$,则x+$\frac{1}{x}$≥2,以上推理过程中的错误为(  )
A.大前提B.小前提C.结论D.无错误

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a,b表示两条不同直线,α,β,γ表示三个不重合的平面,给出下列命题:
①若α∩γ=a,β∩γ=b,且a∥b,则α∥β;
②若a,b相交且都在α,β外,a∥α,b∥α,a∥β,b∥β,则α∥β;
③若a?α,a∥β,α∩β=b,则a∥b.
其中正确命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥的所有棱中,最长的棱的长度为(  )
A.$\sqrt{41}$B.$\sqrt{34}$C.5D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知某个几何体的正视图、侧视图、俯视图均为右图的形状,根据图中标出的尺寸(图中大正方形边长为2a),可得这个几何体的体积是(  )
A.$\frac{20}{3}{a^3}$B.7a3C.$2\sqrt{2}{a^3}$D.5a3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|x2+4≤5x,x∈R},B={y|y>2},则A∩B=(  )
A.(2,+∞)B.(4,+∞)C.(2,4]D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数图象与x轴均有交点,其中不能用二分法求图中函数零点的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系xOy中,已知曲线C上任意一点到点$M(0,\frac{1}{2})$的距离与到直线y=-$\frac{1}{2}$的距离相等.
(Ⅰ)求曲线C的方程;
(Ⅱ)设A1(x1,0),A2(x2,0)是x轴上的两点x1+x2≠0,x1x2≠0,过点A1,A2分别作x轴的垂线,与曲线C分别交于点A1′,A2′,直线A1′A2′与x轴交于点A3(x3,0),这样就称x1,x2确定了x3.同样,可由x2,x3确定了x4.现已知x1=6,x2=2,求x4的值.
(Ⅲ)在曲线C上有A、B两点,且$\overrightarrow{OA}•\overrightarrow{OB}$=0,过原点做直线AB的垂线与直线AB交于M,写出点M的轨迹方程(不要求写出计算过程).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=\left\{{\begin{array}{l}{{x^2}+1}&{(x≤0)}\\{-2x}&{(x>0)}\end{array}}\right.$,则f(3)=6.

查看答案和解析>>

同步练习册答案