| A. | $a≥-\frac{1}{2}$ | B. | $a≥\frac{1}{2}$ | C. | a≥1 | D. | $-\frac{1}{2}≤a≤1$ |
分析 由约束条件作出可行域,再由ax+y≥1恒成立,结合可行域内特殊点A,B,C的坐标满足不等式列不等式组,求解不等式组得实数a的取值范围.
解答
解:由约束条件作可行域如图,
联立 $\left\{\begin{array}{l}{x=1}\\{x+2y-4=0}\end{array}\right.$,解得C(1,$\frac{3}{2}$ ).
联立 $\left\{\begin{array}{l}{x-y-1=0}\\{x+2y-4=0}\end{array}\right.$,解得B(2,1).
在x-y-1=0中取y=0得A(1,0).
要ax+y≥1恒成立,
则ax+y-1≥0恒成立,
即平面区域都在直线ax+y-1=0的上方,
则满足直线的ax+y-1=0的斜率-a<0,
且点A的坐标满足不等式ax+y-1≥0即可,
即a-1≥0,得a≥1,
综上a≥1,
故选:C.
点评 本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{2}{3}$,$\frac{2}{3}$] | B. | [-$\frac{1}{3}$,$\frac{1}{3}$] | C. | [0,$\frac{2}{3}$] | D. | [0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=-sin2x | B. | y=sin(2x+$\frac{π}{4}$) | C. | y=-cos2x | D. | y=cos2x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com