精英家教网 > 高中数学 > 题目详情
将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三个命题:
①面DBC是等边三角形;  
②AC⊥BD;
③三棱锥D-ABC的体积是
2
6

其中正确命题的序号是
 
.(写出所有正确命题的序号)
考点:命题的真假判断与应用
专题:综合题,简易逻辑
分析:先作出图来,①根据图可知BD=
2
DO=1,再由BC=DC=1,可知面DBC是等边三角形.
②由AC⊥DO,AC⊥BO,可得AC⊥平面DOB,从而有AC⊥BD.
③三棱锥D-ABC的体积=
1
3
S△ABC•OD=
1
3
1
2
•1•1•
2
2
=
2
12
解答: 解:如图所示:BD=
2
DO=
2
×
2
2
=1
又BC=DC=1
∴面DBC是等边三角形,即①正确;
∵AC⊥DO,AC⊥BO
∴AC⊥平面DOB
∴AC⊥BD,即②正确;
三棱锥D-ABC的体积=
1
3
S△ABC•OD=
1
3
1
2
•1•1•
2
2
=
2
12

③不正确.
故答案为:①②.
点评:本题主要考查折叠问题,要注意折叠前后的改变的量和位置,不变的量和位置,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)为奇函数,当x∈[-2,0]时,f(x)=
1
3
x3+x2-2ax(a为实数)
(1)若f(x)在x=-1处有极值,求a的值;
(2)求x∈(0,2]时,f(x)的解析式;
(3)若f(x)在[
3
2
,2]上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

设计一个水渠,其横截面为等腰梯形(如图所示),要求满足条件AB+BC+CD=a(常数),∠ABC=120°,写出横截面的面积y与腰长x的关系式,并求它的定义域和值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x,y,x+y},B={0,x2,xy},且A=B,求实数x,y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的不恒为零的函数,且对于任意的x,y∈R都满足:f(xy)=xf(y)+yf(x).
(Ⅰ)判断函数f(x)的奇偶性,并写出证明过程;
(Ⅱ) 求证:?x,y∈R且y≠0:f(
x
y
)=
yf(x)-xf(y)
y2

(Ⅲ) 已知f(2)=2,设an=f(2n)(n∈N*),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

试证明函数y=ln(3x+
1+9x2
)是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

解下列不等式(组):
(1)-x2+2x-
2
3
>0;           
(2)-1<x2+2x-1≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
(1)有理数是实数;           
(2)有些平行四边形不是菱形;
(3)?x∈R,x2-2x>0;     
(4)?x∈R,2x+1为奇数;
以上命题为真命题的序号是
 

查看答案和解析>>

同步练习册答案