精英家教网 > 高中数学 > 题目详情
设计一个水渠,其横截面为等腰梯形(如图所示),要求满足条件AB+BC+CD=a(常数),∠ABC=120°,写出横截面的面积y与腰长x的关系式,并求它的定义域和值.
考点:函数解析式的求解及常用方法,函数的定义域及其求法
专题:应用题,函数的性质及应用
分析:画出图形,结合图形,求出高和上底、下底的长,写出横截面的面积y的解析式,求出它的定义域和值域.
解答: 解:如图所示,
∵腰长AB=x,∠ABC=120°,∴高h=xcos30°=
3
2
x;
∴上底BC=a-2x(0<x<
a
2
),
下底AD=BC+2•xsin30°=(a-2x)+2x•
1
2
=a-x;
∴横截面的面积为
y=
1
2
[(a-2x)+(a-x)]•
3
2
x=-
3
3
4
x2+
3
2
ax(0<x<
a
2
);
∵0<x<
a
2
,y=
3
2
(-
3
2
x2+ax),
∴当x=
a
3
时,y取得最大值ymax=
3
12
a2
∴函数y的值域是(0,
3
12
a2],定义域是(0,
a
2
).
点评:本题考查了求函数的解析式、定义域和值域的问题,解题时应认真分析题意,建立函数的解析式,求出函数的定义域和值域,是综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ln(ax+b)-x,其中a>0,b>0,
(1)若f(x)为[0,+∞)上的减函数,求a,b应满足的关系;
(2)解不等式ln(1+
x-
1
x
)-
x-
1
x
≤ln2-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinωx+cos(ωx+
π
3
)+cos(ωx-
π
3
)-1,(ω>0,x∈R),且函数f(x)的最小正周期为π;
(1)求函数f(x)的解析式;
(2)求f(x)的单调增区间.
(3)当x∈[-
π
6
π
3
]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

AB是⊙O的直径,C为圆上一点,AB=2,AC=1,P为⊙O所在平面外一点,且PA⊥⊙O,PB与平面所成角为45°
(1)证明:BC⊥平面PAC;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是等差数列,{bn}是各项都为正数的等比数列,且满足:a1=b1=1,同时有a3+b2=5,a2+b3=6
(1)求{an},{bn}的通项公式;
(2)求数列{
an
bn
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=1-2a-2ax+2x2(-1≤x≤1)的最小值为f(a),求f(a)的表达式,并指出当a∈[-3,0]时,函数M=log
1
3
f(a)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三个命题:
①面DBC是等边三角形;  
②AC⊥BD;
③三棱锥D-ABC的体积是
2
6

其中正确命题的序号是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{bn}(n∈N*)是递增的等比数列,且b1+b3=5,b1b3=4.数列{an}满足an=log2bn+3,
(Ⅰ)求数列{bn}、{an}的通项公式;
(Ⅱ)若a12+a2+a3+…+am≤a46,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的两焦点为F1,F2,M为椭圆上一点,且M不在直线F1F2上,∠F1MF2=90°,|F1F2|=2c,|MF1|+|MF2|=2a,则△MF1F2的面积是
 

查看答案和解析>>

同步练习册答案