精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sinωx+cos(ωx+
π
3
)+cos(ωx-
π
3
)-1,(ω>0,x∈R),且函数f(x)的最小正周期为π;
(1)求函数f(x)的解析式;
(2)求f(x)的单调增区间.
(3)当x∈[-
π
6
π
3
]时,求函数f(x)的值域.
考点:三角函数中的恒等变换应用,正弦函数的图象
专题:三角函数的图像与性质
分析:(1)利用两角和公式对函数解析式化简,根据周期求得ω,则函数解析式可得.
(2)利用正弦函数的单调性求得函数f(x)的单调性增区间.
(3)根据x的范围,确定2x+
π
6
的范围,最后根据正弦函数的性质求得函数f(x)的值域.
解答: 解:(1)f(x)=
3
sinωx+
1
2
cosωx-
3
2
sinωx+
1
2
cosωx+
3
2
sinωx-1=
3
sinωx+cosωx-1=2sin(ωx+
π
6
)-1,
∵T=
ω
=π,
∴ω=2,
∴f(x)=2sin(2x+
π
6
)-1.
(2)由2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,得kπ-
π
3
≤x≤kπ+
π
6
,k∈Z,
∴函数的单调增区间为:[kπ-
π
3
,kπ+
π
6
](k∈Z).
(3)∵x∈[-
π
6
π
3
],
∴2x+
π
6
∈[-
π
6
6
],
∴-
1
2
≤sin(2x+
π
6
)≤1,
∴-2≤f(x)≤1,
即函数的值域为[-2,1].
点评:本题主要考查了三角函数恒等变换的应用,三角函数图象与性质.综合考查了学生对三角函数基础知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x)在定义域[-4,6]内可导,其图象如图,记y=f(x)的导函数为y=f′(x),则不等式f′(x)≤0的解集为(  )
A、[-
4
3
,1]∪[
11
3
,6]
B、[-3,0]∪[
7
3
,5]
C、[-4,-
4
3
]∪[1,
7
3
]
D、[-4,-3]∪[0,1]∪[5,6]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)为奇函数,当x∈[-2,0]时,f(x)=
1
3
x3+x2-2ax(a为实数)
(1)若f(x)在x=-1处有极值,求a的值;
(2)求x∈(0,2]时,f(x)的解析式;
(3)若f(x)在[
3
2
,2]上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-3,1,4),则点A关于原点的对称点B的坐标为
 
;AB的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单位向量
e1
e2
的夹角为60°,且
a
=2
e1
+
e2
b
=-3
a
+2
e2
,求
a
b
a
b
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
ax+b
1+x2
是定义在(-1,1)上的奇函数,且f(
1
2
)=
2
5

(1)确定函数f(x)的解析式.
(2)用定义证明f(x)在(-1,1)上是增函数.
(3)在(2)的条件下,解不等式f(a2-1)+f(2a-1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

设计一个水渠,其横截面为等腰梯形(如图所示),要求满足条件AB+BC+CD=a(常数),∠ABC=120°,写出横截面的面积y与腰长x的关系式,并求它的定义域和值.

查看答案和解析>>

科目:高中数学 来源: 题型:

解下列不等式(组):
(1)-x2+2x-
2
3
>0;           
(2)-1<x2+2x-1≤2.

查看答案和解析>>

同步练习册答案