1£®ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÔÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢×ø±êϵ£®ÒÑÖªÇúÏßC£º¦Ñsin2¦È=2acos¦È£¨a£¾0£©£¬¹ýµãP£¨-2£¬-4£©µÄÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ö±ÏßlÓëÇúÏßC·Ö±ð½»ÓÚM¡¢NÁ½µã£®
£¨1£©Ð´³öÇúÏßCºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨2£©Èô|PM|£¬|MN|£¬|PN|³ÉµÈ±ÈÊýÁУ¬ÇóaµÄÖµ£®

·ÖÎö £¨1£©Ö±½ÓÀûÓùØÏµÊ½°Ñ¼«×ø±ê·½³Ìת»¯³ÉÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÀûÓòÎÊý·½³ÌºÍÅ×ÎïÏß·½³Ì½¨Á¢³É¹ØÓÚtµÄÒ»Ôª¶þ´Î·½³Ì×飬ÀûÓøùºÍϵÊýµÄ¹ØÏµÇó³öÁ½¸ùºÍÓëÁ½¸ù»ý£¬½øÒ»²½ÀûÓõȱÈÊýÁнøÒ»²½Çó³öaµÄÖµ£®

½â´ð ½â£º£¨1£©ÇúÏßC£º¦Ñsin2¦È=2acos¦È£¨a£¾0£©£¬
ת»¯³ÉÖ±½Ç×ø±ê·½³ÌΪ£ºy2=2ax

ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
ת»¯³ÉÖ±½Ç×ø±ê·½³ÌΪ£ºx-y-2=0£®
£¨2£©½«Ö±ÏߵIJÎÊý·½³Ì$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬´úÈëy2=2axµÃµ½£º
$\frac{1}{2}{t}^{2}-£¨4\sqrt{2}+\sqrt{2}a£©t+16+4a=0$£¬
ËùÒÔ£º${t}_{1}+{t}_{2}=8\sqrt{2}+2\sqrt{2}a$£¬t1t2=32+8a£¬¢Ù
Ôò£º|PM|=t1£¬|PN|=t2£¬|MN|=|t1-t2|
|PM|£¬|MN|£¬|PN|³ÉµÈ±ÈÊýÁУ¬
ËùÒÔ£º$|{t}_{1}-{t}_{2}{|}^{2}=|{t}_{1}{t}_{2}|$£¬¢Ú
Óɢ٢ڵãºa=1£®

µãÆÀ ±¾Ì⿼²éµÄ֪ʶҪµã£º¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬²ÎÊý·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬ÀûÓøùºÍϵÊýµÄ¹ØÏµ½¨Á¢·½³Ì×éÇó½â£¬µÈ±ÈÊýÁеÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®¹ýµã£¨2£¬0£©ÒýÖ±ÏßlÓëÇúÏß$y=\sqrt{2-{x^2}}$ÏཻÓÚA¡¢BÁ½µã£¬OÎª×ø±êÔ­µã£¬µ±¡÷AOBÃæ»ýÈ¡µÃ×î´óֵʱ£¬Ö±ÏßlбÂÊΪ$-\frac{{\sqrt{3}}}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÍÖÔ²CµÄÖÐÐÄÔÚ×ø±êÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬ÆäÀëÐÄÂÊΪ$\frac{\sqrt{5}}{3}$£¬¶ÌÖáµÄ¶ËµãÊÇB1£¬B2£¬µãM£¨2£¬0£©ÊÇxÖáÉϵÄÒ»¶¨µã£¬ÇÒMB1¡ÍMB2£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Éè¹ýµãMÇÒбÂÊ´æÔÚÇÒ²»Îª0µÄÖ±Ïß½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬ÊÔÎÊxÖáÉÏÊÇ·ñ´æÔÚ¶¨µãP£¬Ê¹Ö±ÏßPAÓëPBµÄбÂÊ»¥ÎªÏà·´Êý£¿Èô´æÔÚ£¬Çó³öPµãµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÔĶÁÈçϳÌÐò¿òͼ£¬Èç¹ûÊä³öi=4£¬ÄÇô¿Õ°×µÄÅжϿòÖÐÓ¦ÌîÈëµÄÌõ¼þÊÇ£¨¡¡¡¡£©
A£®S£¼8£¿B£®S£¼12£¿C£®S£¼14£¿D£®S£¼16£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®º¯Êýy=cos£¨sinx£©µÄͼÏó´óÖÂÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÔË«ÇúÏßC£º$\frac{x^2}{a^2}-\frac{y^2}{3}$=1£¨a£¾0£©µÄÒ»¸ö½¹µãFΪԲÐĵÄÔ²ÓëË«ÇúÏߵĽ¥½üÏßÏàÇУ¬Ôò¸ÃÔ²µÄÃæ»ýΪ£¨¡¡¡¡£©
A£®¦ÐB£®3¦ÐC£®6¦ÐD£®9¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®º¯Êýy=ax£¨a£¾0£¬a¡Ù1£©Óëy=xbµÄͼÏóÈçͼ£¬ÔòÏÂÁв»µÈʽһ¶¨³ÉÁ¢µÄÊÇ£¨¡¡¡¡£©
A£®ba£¾0B£®a+b£¾0C£®ab£¾1D£®loga2£¾b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÔÅ×ÎïÏßy2=4xµÄ½¹µãFΪԲÐÄ£¬ÓëÅ×ÎïÏßµÄ×¼ÏßÏàÇеÄÔ²µÄ±ê×¼·½³ÌΪ£¨x-1£©2+y2=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò£¬Êä³öµÄSΪ£¨¡¡¡¡£©
A£®-1006B£®1007C£®-1008D£®1009

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸