·ÖÎö £¨1£©Ö±½ÓÀûÓùØÏµÊ½°Ñ¼«×ø±ê·½³Ìת»¯³ÉÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÀûÓòÎÊý·½³ÌºÍÅ×ÎïÏß·½³Ì½¨Á¢³É¹ØÓÚtµÄÒ»Ôª¶þ´Î·½³Ì×飬ÀûÓøùºÍϵÊýµÄ¹ØÏµÇó³öÁ½¸ùºÍÓëÁ½¸ù»ý£¬½øÒ»²½ÀûÓõȱÈÊýÁнøÒ»²½Çó³öaµÄÖµ£®
½â´ð ½â£º£¨1£©ÇúÏßC£º¦Ñsin2¦È=2acos¦È£¨a£¾0£©£¬
ת»¯³ÉÖ±½Ç×ø±ê·½³ÌΪ£ºy2=2ax
ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
ת»¯³ÉÖ±½Ç×ø±ê·½³ÌΪ£ºx-y-2=0£®
£¨2£©½«Ö±ÏߵIJÎÊý·½³Ì$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬´úÈëy2=2axµÃµ½£º
$\frac{1}{2}{t}^{2}-£¨4\sqrt{2}+\sqrt{2}a£©t+16+4a=0$£¬
ËùÒÔ£º${t}_{1}+{t}_{2}=8\sqrt{2}+2\sqrt{2}a$£¬t1t2=32+8a£¬¢Ù
Ôò£º|PM|=t1£¬|PN|=t2£¬|MN|=|t1-t2|
|PM|£¬|MN|£¬|PN|³ÉµÈ±ÈÊýÁУ¬
ËùÒÔ£º$|{t}_{1}-{t}_{2}{|}^{2}=|{t}_{1}{t}_{2}|$£¬¢Ú
Óɢ٢ڵãºa=1£®
µãÆÀ ±¾Ì⿼²éµÄ֪ʶҪµã£º¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬²ÎÊý·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬ÀûÓøùºÍϵÊýµÄ¹ØÏµ½¨Á¢·½³Ì×éÇó½â£¬µÈ±ÈÊýÁеÄÓ¦Óã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | S£¼8£¿ | B£® | S£¼12£¿ | C£® | S£¼14£¿ | D£® | S£¼16£¿ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | B£® | C£® | D£® |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¦Ð | B£® | 3¦Ð | C£® | 6¦Ð | D£® | 9¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ba£¾0 | B£® | a+b£¾0 | C£® | ab£¾1 | D£® | loga2£¾b |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -1006 | B£® | 1007 | C£® | -1008 | D£® | 1009 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com