精英家教网 > 高中数学 > 题目详情
10.以抛物线y2=4x的焦点F为圆心,与抛物线的准线相切的圆的标准方程为(x-1)2+y2=4.

分析 求出抛物线的焦点坐标,焦点到准线的距离就是所求圆的半径,然后写出圆的方程即可.

解答 解:因为抛物线y2=4x的焦点为圆心即(1,0),与抛物线的准线相切的圆的半径为:2.
所求圆的方程为:(x-1)2+y2=4.
故答案为:(x-1)2+y2=4.

点评 本题考查圆的方程的求法,抛物线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.求实数m的范围,使关于x的方程x2+2(m-1)x+2m+6=0.
(1)有两个实根,且一个比2大,一个比2小.
(2)有两个实根α,β,且满足0<α<1<β<4.
(3)至少有一个正根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立坐标系.已知曲线C:ρsin2θ=2acosθ(a>0),过点P(-2,-4)的直线l的参数方程为$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),直线l与曲线C分别交于M、N两点.
(1)写出曲线C和直线l的普通方程;
(2)若|PM|,|MN|,|PN|成等比数列,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知a,b∈R,矩阵$A=[{\begin{array}{l}{-1}&a\\ b&3\end{array}}]$所对应的变换TA将直线2x-y-3=0变换为自身,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若不等式组$\left\{\begin{array}{l}x-y≤0\\ x-2y+2≥0\\ x≥m\end{array}\right.$表示的平面区域是面积为$\frac{16}{9}$的三角形,则m的值为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$-\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图所示,已知F1,F2为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的两个焦点,且|F1F2|=2,若以坐标原点O为圆心,|F1F2|为直径的圆与该双曲线的左支相交于A,B两点,且△F2AB为正三角形,则双曲线的实轴长为$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设F为抛物线C:y2=2px(p>0)的焦点,过F且倾斜角为30°的直线交C于A,B两点,若|AB|=12,则p=(  )
A.$\frac{3}{2}$B.3C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知锐角△ABC的内角A,B,C的对边分别为a,b,c,向量$\overrightarrow{m}$=(-$\sqrt{3}$,cosA),$\overrightarrow{n}$=(2sinA,cos2A),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(Ⅰ)求角A的大小.
(Ⅱ)如果a=3,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设锐角三角形ABC的三边长分别a、b、c,求证:acosA+bcosB+ccosC≤$\frac{1}{2}$(a+b+c)

查看答案和解析>>

同步练习册答案