精英家教网 > 高中数学 > 题目详情
4.已知四棱锥S-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,SA=SD=$\sqrt{5},SB=\sqrt{7}$,点E是棱AD的中点,点F在棱SC上,且$\frac{SF}{SC}$=λ,SA∥平面BEF.
(Ⅰ)求实数λ的值;
(Ⅱ)求三棱锥F-EBC的体积.

分析 (Ⅰ)连接AC,设AC∩BE=G,推导出SA∥FG,从而△GEA~△GBC,由此能求出$λ=\frac{1}{3}$.
(Ⅱ)由${V_{F-BCE}}=\frac{2}{3}{V_{S-EBC}}=\frac{1}{3}{V_{S-ABCD}}$,能求出三棱锥F-EBC的体积.

解答 解:(Ⅰ)连接AC,设AC∩BE=G,则平面SAC∩平面EFB=FG,
∵SA∥平面EFB,∴SA∥FG,
∴△GEA~△GBC,∴$\frac{AG}{GC}=\frac{AE}{BC}=\frac{1}{2}$,
∴$\frac{SF}{FC}=\frac{AG}{GC}=\frac{1}{2}⇒SF=\frac{1}{3}SC$,
解得$λ=\frac{1}{3}$.
(Ⅱ)∵$SA=SD=\sqrt{5}$,∴SE⊥AD,SE=2,
又∵AB=AD=2,∠BAD=60°,∴$BE=\sqrt{3}$,
∴SE2+BE2=SB2,∴SE⊥BE,
∴SE⊥平面ABCD,
所以${V_{F-BCE}}=\frac{2}{3}{V_{S-EBC}}=\frac{1}{3}{V_{S-ABCD}}=\frac{1}{3}×\frac{1}{3}×2×2sin60°×2=\frac{{4\sqrt{3}}}{9}$.

点评 本题考查实数值的求法,考查几何体的体积的求法,考查空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力、空间思维能力,考查数数结合思想、函数与方程思想、化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.中国古代数学名草《周髀算经》曾记载有“勾股各自乘,并而开方除之”,用符号表示为a2+b2=c2(a,b,c∈N*),我们把a,b,c叫做勾股数.下列给出几组勾股数:3,4,5;5,12,13;7,24,25;9,40,41,以此类推,可猜测第5组股数的三个数依次是11,60,61.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如果一条信息有n(n>1,n∈N)种可能的情形(各种情形之间互不相容),且这些情形发生的概率分别为p1,p2,…,pn,则称H=f(p1)+f(p2)+…f(pn)(其中f(x)=-xlogax,x∈(0,1))为该条信息的信息熵.已知$f(\frac{1}{2})=\frac{1}{2}$.
(1)若某班共有32名学生,通过随机抽签的方式选一名学生参加某项活动,试求“谁被选中”的信息熵的大小;
(2)某次比赛共有n位选手(分别记为A1,A2,…,An)参加,若当k=1,2,…,n-1时,选手Ak获得冠军的概率为2-k,求“谁获得冠军”的信息熵H关于n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,D,E分别为BC,AB的中点,F为AD的中点,若$\overrightarrow{AB}•\overrightarrow{AC}=-1$,AB=2AC=2,则$\overrightarrow{CE}•\overrightarrow{AF}$的值为(  )
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{1}{8}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设(x2-3x+2)5=a0+a1x+a2x2+…+a10x10,则a1等于-240.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若变量x,y满足$\left\{\begin{array}{l}{2x-y-6≤0}\\{x-y+3≥0}\\{x≥1}\end{array}\right.$,目标函数z=2ax+by(a>0,b>0)取得最大值的是6,则$\frac{1}{a}+\frac{2}{b}$的最小值为7+4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若a>0,b>0,4a+b=ab.
(Ⅰ)求a+b的最小值;
(Ⅱ)当a+b取得最小值时,a,b的值满足不等式|x-a|+|x-b|≥t2-2t对任意的x∈R恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象过点B(0,-1),且在($\frac{π}{18}$,$\frac{π}{3}$)上单调,同时f(x)的图象向左平移π个单位之后与原来的图象重合,当x1,x2∈(-$\frac{17π}{12}$,-$\frac{2π}{3}$),且x1≠x2时,f(x1)=f(x2),则f(x1+x2)=(  )
A.-$\sqrt{3}$B.-1C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某销售公司为了解员工的月工资水平,从1000位员工中随机抽取100位员工进行调查,得到如下的频率分布直方图:
(1)试由此图估计该公司员工的月平均工资;
(2)该公司工资发放是以员工的营销水平为重要依据来确定的,一般认为,工资低于4500元的员工属于学徒阶段,没有营销经验,若进行营销将会失败;高于4500元的员工是具备营销成熟员工,进行营销将会成功.现将该样本按照“学徒阶段工资”、“成熟员工工资”分为两层,进行分层抽样,从中抽出5人,在这5人中任选2人进行营销活动.活动中,每位员工若营销成功,将为公司赢得3万元,否则公司将损失1万元,试问在此次比赛中公司收入多少万元的可能性最大?

查看答案和解析>>

同步练习册答案