精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象过点B(0,-1),且在($\frac{π}{18}$,$\frac{π}{3}$)上单调,同时f(x)的图象向左平移π个单位之后与原来的图象重合,当x1,x2∈(-$\frac{17π}{12}$,-$\frac{2π}{3}$),且x1≠x2时,f(x1)=f(x2),则f(x1+x2)=(  )
A.-$\sqrt{3}$B.-1C.1D.$\sqrt{3}$

分析 由题意求得φ、ω的值,写出函数f(x)的解析式,求图象的对称轴,得x1+x2的值,再求f(x1+x2)的值.

解答 解:由函数f(x)=2sin(ωx+φ)的图象过点B(0,-1),
∴2sinφ=-1,解得sinφ=-$\frac{1}{2}$,
又|φ|<$\frac{π}{2}$,∴φ=-$\frac{π}{6}$,
∴f(x)=2sin(ωx-$\frac{π}{6}$);
又f(x)的图象向左平移π个单位之后为
g(x)=2sin[ω(x+π)-$\frac{π}{6}$]=2sin(ωx+ωπ-$\frac{π}{6}$),
由两函数图象完全重合知ωπ=2kπ,∴ω=2k,k∈Z;
又$\frac{π}{3}$-$\frac{π}{18}$≤$\frac{T}{2}$=$\frac{π}{ω}$,
∴ω≤$\frac{18}{5}$,∴ω=2;
∴f(x)=2sin(2x-$\frac{π}{6}$),其图象的对称轴为x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z;
当x1,x2∈(-$\frac{17π}{12}$,-$\frac{2π}{3}$),其对称轴为x=-3×$\frac{π}{2}$+$\frac{π}{3}$=-$\frac{7π}{6}$,
∴x1+x2=2×(-$\frac{7π}{6}$)=-$\frac{7π}{3}$,
∴f(x1+x2)=f(-$\frac{7π}{3}$)
=2sin[2×(-$\frac{7π}{3}$)-$\frac{π}{6}$]
=2sin(-$\frac{29π}{6}$)
=-2sin$\frac{29π}{6}$
=-2sin$\frac{5π}{6}$=-1.
应选:B.

点评 本题主要考查了三角函数的图象变换和性质的应用问题,也考查了运算求解能力,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点为F,过点F向双曲线的一条渐进线引垂线,垂足为M,交另一条渐近线于N,若2$\overrightarrow{MF}$=$\overrightarrow{FN}$,则双曲线的离心率$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知四棱锥S-ABCD中,底面ABCD是边长为2的菱形,∠BAD=60°,SA=SD=$\sqrt{5},SB=\sqrt{7}$,点E是棱AD的中点,点F在棱SC上,且$\frac{SF}{SC}$=λ,SA∥平面BEF.
(Ⅰ)求实数λ的值;
(Ⅱ)求三棱锥F-EBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知F1、F2分别为椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,P在椭圆E上,且|PF1|的最小值为1,最大值为3.
(1)求椭圆E的方程;
(2)过F1的直线l1,l2分别交椭圆E于点A,C和B,D,且l1⊥l2,则$\frac{|AC|+|BD|}{|AC|×|BD|}$是否为常数?若是,求出该常数的值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“2a>2b>1”是“$\root{3}{a}$>$\root{3}{b}$”的(  )条件.
A.充要B.必要不充分
C.充分不必要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某商家在网上销售一种商品,从该商家的销售数据中抽取6天的价格与销量的对应数据,如下表所示:
价格x(百元)456789
销量y(件/天)908483807568
(Ⅰ)由表中数据,看出可用线性回归模型拟合y与x的关系,试求y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并预测当价格为1000元时,每天的商品的销量为多少;
(Ⅱ)若以从这6天中随机抽取2天,至少有1天的价格高于700元的概率作为客户A,B购买此商品的概率,而客户C,D购买此商品的概率均为$\frac{1}{2}$,设这4位客户中购买此商品的人数为X,求X的分布列和数学期望.
参考数据:$\sum_{i=1}^{6}$xiyi=3050,$\sum_{i=1}^{6}$x${\;}_{i}^{2}$=271.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.等比数列{an}的前n项和为Sn,Sn=b(-2)n-1-a,则$\frac{a}{b}$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中点.
(1)求证:A1B∥平面AEC1
(2)在棱AA1上存在一点M,满足B1M⊥C1E,求平面MEC1与平面ABB1A1所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若非零向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为锐角θ,且$\frac{|\overrightarrow{a}|}{|\overrightarrow{b}|}$=cosθ,则称$\overrightarrow{a}$被$\overrightarrow{b}$“同余”.已知$\overrightarrow{b}$被$\overrightarrow{a}$“同余”,则$\overrightarrow{a}-\overrightarrow{b}$在$\overrightarrow{a}$上的投影是(  )
A.$\frac{{\overrightarrow{a}}^{2}-{\overrightarrow{b}}^{2}}{|\overrightarrow{a}|}$B.$\frac{{\overrightarrow{a}}^{2}-{\overrightarrow{b}}^{2}}{{\overrightarrow{a}}^{2}}$C.$\frac{{\overrightarrow{b}}^{2}-{\overrightarrow{a}}^{2}}{|\overrightarrow{b}|}$D.$\frac{{\overrightarrow{a}}^{2}-{\overrightarrow{b}}^{2}}{|\overrightarrow{b}|}$

查看答案和解析>>

同步练习册答案