精英家教网 > 高中数学 > 题目详情
1.已知F1、F2分别为椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,P在椭圆E上,且|PF1|的最小值为1,最大值为3.
(1)求椭圆E的方程;
(2)过F1的直线l1,l2分别交椭圆E于点A,C和B,D,且l1⊥l2,则$\frac{|AC|+|BD|}{|AC|×|BD|}$是否为常数?若是,求出该常数的值;若不是,请说明理由.

分析 (1)由题意可知:a-c=1,a+c=3,即可求得a和b的值,即可求得椭圆方程;
(2)对k分类讨论,把直线方程代入椭圆方程得到关于x的一元二次方程,利用根与系数的关系、斜率计算公式、弦长公式即可得出结论.

解答 解:(1)由题意可知:|PF1|min=a-c=1,|PF1|max=a+c=3,
解得:a=2,c=1,则b2=a2-c2=3,
∴椭圆的标准方程:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)①当AC的斜率为零或斜率不存在时,则丨AC丨=2a=4,丨BD丨=$\frac{2{b}^{2}}{a}$=3,
$\frac{1}{丨AC丨}$+$\frac{1}{丨BD丨}$=$\frac{|AC|+|BD|}{|AC|×|BD|}$=$\frac{7}{12}$;
则$\frac{|AC|+|BD|}{|AC|×|BD|}$是常数$\frac{7}{12}$;
②当AC的斜率k存在且k≠0时,AC的方程为y=k(x+1),
$\left\{\begin{array}{l}{y=k(x+1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,并化简得(3+4k2)x2+8k2x+4k2-12=0.
设A(x1,y1),C(x2,y2),x1+x2=-$\frac{8{k}^{2}}{3+4{k}^{2}}$,x1x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,
丨AC丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{12(1+{k}^{2})}{3+4{k}^{2}}$,
∵直线BD的斜率为-$\frac{1}{k}$,
∴|BD|=$\frac{12[1+(-\frac{1}{k})]}{3+4(-\frac{1}{k})^{2}}$=$\frac{12(1+{k}^{2})}{4+3{k}^{2}}$,
∴则$\frac{|AC|+|BD|}{|AC|×|BD|}$=$\frac{1}{丨AC丨}$+$\frac{1}{丨BD丨}$=$\frac{3+4{k}^{2}}{12(1+{k}^{2})}$+$\frac{4+3{k}^{2}}{12(1+{k}^{2})}$=$\frac{7}{12}$;
综上:则$\frac{|AC|+|BD|}{|AC|×|BD|}$为常数$\frac{7}{12}$.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交转化为方程联立可得根与系数的关系、弦长公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{\sqrt{2}}{2}$sin(2x+$\frac{π}{4}$)+sin2x.
(1)求函数f(x)的最小正周期;
(2)若函数g(x)对任意x∈R,有g(x)=f(x+$\frac{π}{6}$),求函数g(x)在[-$\frac{π}{6}$,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,D,E分别为BC,AB的中点,F为AD的中点,若$\overrightarrow{AB}•\overrightarrow{AC}=-1$,AB=2AC=2,则$\overrightarrow{CE}•\overrightarrow{AF}$的值为(  )
A.$\frac{3}{4}$B.$\frac{3}{8}$C.$\frac{1}{8}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若变量x,y满足$\left\{\begin{array}{l}{2x-y-6≤0}\\{x-y+3≥0}\\{x≥1}\end{array}\right.$,目标函数z=2ax+by(a>0,b>0)取得最大值的是6,则$\frac{1}{a}+\frac{2}{b}$的最小值为7+4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若a>0,b>0,4a+b=ab.
(Ⅰ)求a+b的最小值;
(Ⅱ)当a+b取得最小值时,a,b的值满足不等式|x-a|+|x-b|≥t2-2t对任意的x∈R恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{1-{2}^{x}}{1+{2}^{x}}$•sin(cosx)的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象过点B(0,-1),且在($\frac{π}{18}$,$\frac{π}{3}$)上单调,同时f(x)的图象向左平移π个单位之后与原来的图象重合,当x1,x2∈(-$\frac{17π}{12}$,-$\frac{2π}{3}$),且x1≠x2时,f(x1)=f(x2),则f(x1+x2)=(  )
A.-$\sqrt{3}$B.-1C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知A、B为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右顶点,F1,F2为其左右焦点,双曲线的渐近线上一点P(x0,y0)(x0<0,y0>0),满足$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$=0,且∠PBF1=45°,则双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x|x-2|,则不等式f(2-ln(x+1))>f(3)的解集为{x|-1<x<$\frac{1}{e}$-1}.

查看答案和解析>>

同步练习册答案