分析 先根据数列的递推公式可得数列{an}以6为首项,以$\frac{1}{3}$为公差的等差数列,再根据对数的运算性质化简${b_{n+1}}-{b_n}=2{log_{\frac{1}{3}}}({\frac{a_n}{18}})$=2n,利用累加法求出bn=n(n-1)+2,再放缩裂项求和求出Tn<1,问题得以解决.
解答 解:当n=1时,2S1=6-a1,
∴a1=6,
∵2Sn=6-an,
∴2Sn-1=6-an-1,
∴2an=-an+an-1,
∴3an=an-1,
∴数列{an}以6为首项,以$\frac{1}{3}$为公差的等差数列,
∴an=6×($\frac{1}{3}$)n-1,
∴${b_{n+1}}-{b_n}=2{log_{\frac{1}{3}}}({\frac{a_n}{18}})$=2n,
∴b2-b1=2,
b3-b2=4,
…
bn-bn-1=2(n-1),
累加可得bn-b1=2(1+2+3+…+n-1)=n(n-1),
∴bn=n(n-1)+2,
∴$\frac{1}{{b}_{n}}$=$\frac{1}{n(n-1)+2}$≤$\frac{1}{n(n-1)}$=$\frac{1}{n-1}$-$\frac{1}{n}$,n≥2,
∴Tn=$\frac{1}{2}$+$\frac{1}{2×1+2}$+$\frac{1}{3×2+2}$+…+$\frac{1}{n(n-1)+2}$≤$\frac{1}{2}$+$\frac{1}{2×1}$+$\frac{1}{3×2}$+…+$\frac{1}{n(n-1)}$=$\frac{1}{2}$+1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n-1}$-$\frac{1}{n}$=$\frac{3}{2}$-$\frac{1}{n}$<1,n≥2时,即Tn<1,
当n=1时,T1=$\frac{1}{2}$<1,
综上所述Tn<1,
∴m的最小值为1
故答案为:1.
点评 本题考查了数列的递推公式和累加求通项公式和裂项求和和放缩证明不等式成立,考查了学生的运算能力和转化能力,属于中档题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2粒 | B. | 4粒 | C. | 3粒 | D. | 5粒 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.81 | B. | 0.9 | C. | 0.64 | D. | 0.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com