精英家教网 > 高中数学 > 题目详情
14.一名射击运动员射击10次,命中环数如下,则该运动员命中环数的标准差为(  )
10  10  10  9  10  8  8  10  10  8.
A.0.81B.0.9C.0.64D.0.8

分析 根据题中的数据,结合平均数、方差的计算公式,不难算出学员在一次射击测试中射击命中环数的方差,从而得到答案.

解答 解:$\overline{x}$=$\frac{1}{10}$(60+9+24)=9.3,
故方差是s2=$\frac{1}{10}$(0.49×6+0.09+1.69×3)=0.81,
故s=0.9,
故选:B.

点评 本题以求两人射击命中环数的平均数和方差为载体,考查了样本平均数、方差的计算公式和对特征数的处理等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设向量$\overrightarrow{a}$=(cosα,$\frac{\sqrt{2}}{2}$)的模为$\frac{\sqrt{3}}{2}$,则cos2α=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{4}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}的前n项和为Sn,且对任意的正整数n都有2Sn=6-an,数列{bn}满足b1=2,且对任意的正整数n都有${b_{n+1}}-{b_n}=2{log_{\frac{1}{3}}}({\frac{a_n}{18}})$,且数列$({\frac{1}{b_n}})$的前n项和Tn<m对一切n∈N*恒成立,则实数m的小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数g(x)=(-x2+ax-3)ex(a为实数).当a=5时,求函数y=g(x)在x=1处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下面几种推理是合情推理的是(  )
①由圆的性质类比出球的有关性质
②由直角三角形、等腰三角形、等边三角形内角和是180°归纳出所有三角形的内角和都是180°
③某次考试张军成绩是100分,由此推出全班同学成绩都是100分
④数列1,0,1,0,…,推测出每项公式an=$\frac{1}{2}$+(-1)n+1•$\frac{1}{2}$.
A.①②B.①③④C.①②④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直线l:(k-1)x-2y+5-3k=0(k∈R)恒过定点P,圆C经过点A(4,0)和点P,且圆心在直线x-2y+1=0上.
(1)求定点P的坐标;
(2)求圆C的方程;
(3)已知点P为圆C直径的一个端点,若另一个端点为点Q,问:在y轴上是否存在一点M(0,m),使得△PMQ为直角三角形,若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若△ABC的内角A,B,C满足$\frac{sinA}{2}$=$\frac{sinB}{4}$=$\frac{sinC}{3}$,则cosB=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.-$\frac{1}{2}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}满足a1=1,an+1=$\frac{{a}_{n}}{{{a}_{n}}^{2}+1}$.
(Ⅰ)求证:an+1<an
(Ⅱ)求证:$\frac{1}{{2}^{n-1}}$≤an≤$\frac{{2}^{n}}{3•{2}^{n}-4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,a、b、c分别是角A、B、C的对边,且满足(a+b)sin$\frac{C}{2}$=12,(a-b)cos$\frac{C}{2}$=5,则c=13.

查看答案和解析>>

同步练习册答案