精英家教网 > 高中数学 > 题目详情
10.已知集合A={x|2x2-7x+3<0},B={x∈Z|lgx<1},则阴影部分表示的集合的元素个数为(  )
A.1B.2C.3D.4

分析 根据图所示的阴影部分所表示的集合的元素属于集合A但不属于集合B,即求A∩B,根据交集的定义和补集的定义即可求得

解答 解:阴影部分所表示的集合为A∩B,
A={x|2x2-7x+3<0}=($\frac{1}{2}$,3),
B={x∈Z|lgx<1}={x∈Z|0<x<10},
A∩B={1,2},
那么满足图中阴影部分的集合的元素的个数为2,
故选B

点评 本题主要考查了Venn图表达集合的关系及运算,同时考查了识图能力和分析问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在区间[-3,3]上随机选取一个实数x,则事件“2x-3<0”发生的概率是(  )
A.$\frac{4}{5}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线Γ:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一条渐近线为l,圆C:(x-a)2+y2=8与l交于A,B两点,若△ABC是等腰直角三角形,且$\overrightarrow{OB}=5\overrightarrow{OA}$(其中O为坐标原点),则双曲线Γ的离心率为(  )
A.$\frac{{2\sqrt{13}}}{3}$B.$\frac{{2\sqrt{13}}}{5}$C.$\frac{{\sqrt{13}}}{5}$D.$\frac{{\sqrt{13}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图,则该几何体的体积为(  )
A.18B.20C.24D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x-a)2lnx,a∈R.
(1)若$a=3\sqrt{e}$,其中e为自然对数的底数,求函数$g(x)=\frac{f(x)}{x}$的单调区间;
(2)若函数f(x)既有极大值,又有极小值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的两条渐近线互相垂直,F1,F2分别为C的左,右焦点,P点在该双曲线的右支上且到直线x=-$\frac{{\sqrt{2}}}{2}$a的距离为3$\sqrt{2}$,若|PF1|+|PF2|=8,则双曲线的标准方程为(  )
A.$\frac{x^2}{4}-\frac{y^2}{4}=1$B.$\frac{x^2}{8}-\frac{y^2}{8}=1$C.$\frac{x^2}{16}-\frac{y^2}{16}=1$D.以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=|{x+\frac{1}{x}}$|(x≠0)
(1)求不等式f(x)<|x-1|的解集;
(2)若对?x∈(-∞,0)∪(0,+∞),不等式f(x)>|x-a|-|1+x|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=ax-1(a>0,a≠1)的图象恒过定点A,若点在直线mx+ny=1上,则mn的最大值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在如图所示的几何体中,四边形CDEF为正方形,四边形ABCD为等腰梯形,AB∥CD,AB=2BC,∠BAC=30°,AC⊥FB.
(Ⅰ)求证:AC⊥平面FBC;
(Ⅱ)求FC与平面EAC所成角的正弦值.

查看答案和解析>>

同步练习册答案