精英家教网 > 高中数学 > 题目详情
19.函数y=ax-1(a>0,a≠1)的图象恒过定点A,若点在直线mx+ny=1上,则mn的最大值为$\frac{1}{4}$.

分析 首先利用已知函数图象过定点A,得到m,n的等式,利用基本不等式求mn的最大值.

解答 解:因为函数y=ax-1(a>0,a≠1)的图象恒过定点A(1,1),又点在直线mx+ny=1上,所以m+n=1,
mn≤$(\frac{m+n}{2})^{2}$=$\frac{1}{4}$;
所以mn的最大值为$\frac{1}{4}$;当且仅当m=n时等号成立.
故答案为:$\frac{1}{4}$

点评 本题考查了指数函数的图象以及基本不等式的运用;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=ln\frac{1+x}{1-x}+{x^3}$,若函数y=f(x)+f(k-x2)有两个零点,则实数k的取值范围是(  )
A.$({-\frac{1}{4},+∞})$B.$({-\frac{1}{4},0})$C.$({-\frac{1}{4},2})$D.$[{-\frac{1}{4},2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|2x2-7x+3<0},B={x∈Z|lgx<1},则阴影部分表示的集合的元素个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过正方体ABCD-A1B1C1D1的顶点A作平面α,使棱AB,AD,AA1所在直线与平面α所成角都相等,则这样的平面α可以作(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,椭圆C:$\frac{x^2}{a^2}$+y2=1(a>b>0)的左右焦点F1,F2,P分别为是C上异于长轴端点的动点,∠F1PF2的平分线交x轴于点M,当P在轴上的射影为F2时,M恰为OF2中点.
(1)求C的方程;
(2)过点F2引PF2的垂线交直线l:x=2于点Q,试判断直线PQ与C是否有其它公共点?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某通讯商推出两款流量套餐,详情如下:
 套餐名称 月套餐费(单位;元) 月套餐流量(单位,M)
 A 20 300
 B 30 500
这两款套餐都有如下的附加条款:套餐费月初一次性收取,手机使用一旦超出套餐流量,系统就自动帮用户充值200M流量,资费20元;如果又超出充值流量,系统就再次自动帮用户充值200M流量,资费20元/次,依此类推,如果当流量有剩余,系统将自动清零,无法转入次月使用.
小王过去50个月的手机月使用流量(单位:M)频率分布表如下:
 月使用流量分组[100,200] (200,300] (300,400] (400,500] (500,600] (600,700]
 频数 4 11 12 18 4 1
根据小王过去50个月的收集月使用流量情况,回答下列问题:
(1)若小王订购A套餐,假设其手机月实际使用流量为x(单位:M,100≤x≤700)月流量费用y(单位:元),将y表示为x的函数;
(2)小王拟从A套餐或B套餐中选订一款,若以月平均费用作为决策依据,他应订购哪一种套餐?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.动点P在抛物线y=2x2+1上移动,若P与点Q(0,-1)连线的中点为M,则动点M的轨迹方程为(  )
A.y=2x2B.y=4x2C.y=6x2D.y=8x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=1-$\frac{1}{x}$-alnx(a∈R),g(x)=2x-ex(e=2.71828…是自然对数的底数).
(Ⅰ)求函数g(x)的单调区间;
(Ⅱ)判断a>1时,f($\frac{1}{{e}^{a}}$)的符号;
(Ⅲ)若函数f(x)有两个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知等比数列{an}的公比$q=\frac{1}{2}$,a2=8,则其前3项和S3的值为(  )
A.24B.28C.32D.16

查看答案和解析>>

同步练习册答案