精英家教网 > 高中数学 > 题目详情
16.已知数列{an}满足Sn+an=2n+1.(n∈N*
(1)求出a1,a2,a3的值;
(2)由(1)猜测an的表达式,并用数学归纳法证明所得结论.

分析 (1)根据Sn+an=2n+1,代入即可求出a1,a2,a3
(2)总结出规律求出an,然后利用归纳法进行证明,检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立.

解答 解:(1)由a1+a1=2+1,得a1=$\frac{3}{2}$,
由a1+a2+a2=2×2+1,得a2=$\frac{7}{4}$,
同理a3=$\frac{15}{8}$.
(2)猜测an=2-$\frac{1}{{2}^{n}}$(n∈N*
证明:①由(1)当n=1时,a1=$\frac{3}{2}$命题成立;
②假设n=k时,ak=2-$\frac{1}{{2}^{k}}$成立,
则n=k+1时,由已知Sk+1+ak+1=Sk+2ak+1=2k+3,
把Sk=2k+1-ak及ak=2-$\frac{1}{{2}^{k}}$代入化简ak+1=2-$\frac{1}{{2}^{k+1}}$
即n=k+1时,命题成立.
由①②得an=2-$\frac{1}{{2}^{n}}$(n∈N*).

点评 此题主要考查归纳法的证明,归纳法一般三个步骤:(1)验证n=1成立;(2)假设n=k成立;(3)利用已知条件证明n=k+1也成立,从而求证,这是数列的通项一种常用求解的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,
(1)求|$\overrightarrow{a}$-$\overrightarrow{b}$|与|2$\overrightarrow{a}$-$\overrightarrow{b}$|的值;
(2)求$\overrightarrow{b}$-$\overrightarrow{a}$与2$\overrightarrow{a}$-$\overrightarrow{b}$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某厂拟生产甲、乙两种适销产品,每件产品甲的销售收入为3千元,每件产品乙的销售收入为4千元.这两种产品都需要在A,B两种不同的设备上加工,按工艺规定,一件产品甲和一件产品乙在各设备上需要加工工时如表所示:
 设备
产品
 A B
 甲 2h 1h
 乙 2h 2h
已知A,B两种设备每月有效使用台时数分别为400h、300h(一台设备工作一小时称为一台时).分别用x,y表示计划每月生产甲、乙产品的件数.
(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问每月分别生产甲、乙两种产品各多少件,可使每月的收入最大?并求出此最大收入.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a,b是两条直线,α是一个平面,则下列判断正确的是(  )
A.a⊥α,b⊥α,则a⊥bB.a∥α,b?α,则a∥b
C.a⊥b,b?α,则a⊥αD.a∥b,b?α,a?α,则a∥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x-a|.
(1)若不等式f(x)≤9的解集为{x|-2≤x≤16},求实数a的值;
(2)在(1)的条件下,若不等式f(x)+f(x-1)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=$\left\{\begin{array}{l}cosπx(x≤0)\\ f(x-1)+1(x>0)\end{array}\right.$,则f($\frac{4}{3}$)的值为(  )
A.$\frac{5}{2}$B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知sin($\frac{π}{6}$+α)=$\frac{1}{4}$,则cosα+$\sqrt{3}$sinα的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.执行如图所示的算法框图,若输入的x的值为2,则输出的n的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若不等式a≤$\frac{1-x}{x}$+1nx对于任意x∈[$\frac{1}{2}$,2]恒成立,则a的取值范围是(  )
A.(-∞,0]B.(-∞,ln2-$\frac{1}{2}$]C.(-∞,0)D.(-∞,ln2-$\frac{1}{2}$)

查看答案和解析>>

同步练习册答案