精英家教网 > 高中数学 > 题目详情
5.若不等式a≤$\frac{1-x}{x}$+1nx对于任意x∈[$\frac{1}{2}$,2]恒成立,则a的取值范围是(  )
A.(-∞,0]B.(-∞,ln2-$\frac{1}{2}$]C.(-∞,0)D.(-∞,ln2-$\frac{1}{2}$)

分析 由题意设f(x)=$\frac{1-x}{x}$+1nx,x∈[$\frac{1}{2}$,2].利用导数求其最小值得答案.

解答 解:设f(x)=$\frac{1-x}{x}$+1nx=$\frac{1}{x}+lnx-1$,x∈[$\frac{1}{2}$,2].
则f′(x)=$-\frac{1}{{x}^{2}}+\frac{1}{x}$,
令f′(x)=0,解得x=1.
则f(x)在($\frac{1}{2}$,1)上单调递减,在(1,2)上单调递增.
∴f(x)min=f(1)=1+lni-1=0.
∵不等式a≤$\frac{1-x}{x}$+1nx对于任意x∈[$\frac{1}{2}$,2]恒成立,
∴a≤f(x)min=0.
即a≤0.
∴a的取值范围是(-∞,0].
故选:A.

点评 本题考查恒成立问题,考查利用导数求函数在闭区间上的最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足Sn+an=2n+1.(n∈N*
(1)求出a1,a2,a3的值;
(2)由(1)猜测an的表达式,并用数学归纳法证明所得结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,网格纸上小正方形的边长为1,粗线画出的是一个多面体的三视图,则该多面体的体积是(  )
A.16B.32C.48D.$\frac{64}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在三棱柱ABC-A′B′C′中,△ABC是正三角形,侧棱AA′⊥底面ABC,若该三棱柱各棱长相等,则直线A′C与平面BCC′B′所成角的正弦值是(  )
A.$\frac{{\sqrt{6}}}{4}$B.$\frac{{\sqrt{10}}}{4}$C.$\frac{{\sqrt{15}}}{5}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.$\frac{tan20°+tan40°+tan120°}{tan20°tan40°}$的值为(  )
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,利用随机模拟的方法可以估计图中曲线y=f(x)与两直线x=2及y=0所围成的阴影部分的面积S:①先从区间[0,2]随机产生2N个数x1,x2,…xn,y1,y2,…yn,构成N个数对,(x1,y1),(x2,y2),…(xn,yn);②统计满足条件y<f(x)的点(x,y)的个数N1,已知某同学用计算器做模拟试验结果,当N=1000时,N1=300,则据此可估计S的值为1.2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校计划向高一年级1240名学生开设校本选修课程,为确保工作的顺利实施,按性别进行分层抽样,现抽取124名学生对社会科学类、自然科学类这两大类校本选修课程进行选课意向调查,其中男生有64人,在这124名学生中选修社会科学类的男生有22人、女生有40人
(Ⅰ)根据以上数据完成下列列联表
  选修社会科学类 选修自然科学类 合计
 男生   
 女生   
 合计   
(Ⅱ)判断能否有99.9%的把握认为科学的选修与性别有关?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
 P(K2≥k0 0.10 0.05 0.010 0.005 0.001
 k0 2.706 3.841 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数y=$\frac{1}{3}$x3-2x2+3ax 且函数过点(1,$\frac{4}{3}$),解答:
(1)求a;
(2)判断函数的单调性;
(3)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知cos($\frac{π}{4}$+α)=-$\frac{3}{5}$,且α是第三象限角,则cos($\frac{π}{4}$+2α)的值为(  )
A.$\frac{31}{50}$$\sqrt{2}$B.$\frac{17}{50}$$\sqrt{2}$C.-$\frac{17}{50}$$\sqrt{2}$D.-$\frac{31}{50}$$\sqrt{2}$

查看答案和解析>>

同步练习册答案