精英家教网 > 高中数学 > 题目详情
1.已知抛物线y2=4x的焦点为F,其准线与x轴交于点H,点P在抛物线上,且$|PH|=\sqrt{2}|PF|$,则点P的横坐标为1.

分析 过P作PE垂直于准线与E,由抛物线的定义得|PE|=|PF|;通过$|PH|=\sqrt{2}|PF|$,即可得到结论.

解答 解:过P作PE垂直于准线与E.
由抛物线的定义得:|PE|=|PF|.
抛物线y2=4x的焦点为F,其准线与x轴交于点H,点P在抛物线上,在Rt△EPH中,$|PH|=\sqrt{2}|PF|$,
所以EPFH是正方形.抛物线y2=4x的焦点为F(1,0),
则点P的横坐标为:1.
故答案为:1.

点评 本题主要考查抛物线的简单性质.解题的关键在于利用抛物线的定义得到|NE|=|NF|.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.18、如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=PC=1,$PB=PD=\sqrt{2}$,E为线段PD上一点,且PE=2ED.
(Ⅰ)若F为PE的中点,证明:BF∥平面ACE;
(Ⅱ)求二面角P-AC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=mex-x-2(其中e为自然对数的底数)
(1)若f(x)>0在R上恒成立,求m的取值范围;
(2)若f(x)的两个零点为x1,x2,且x1<x2,求$y=({e^{x_2}}-{e^{x_1}})(\frac{1}{{{e^{x_2}}+{e^{x_1}}}}-m)$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x∈R||x|≥2},B={x∈R|x2-x-2<0},则下列结论正确的是(  )
A.A∪B=RB.A∩B≠∅C.A∪B=∅D.A∩B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知平面向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(m,-1)$,$\overrightarrow c=(4,m)$,且$(\overrightarrow a-\overrightarrow b)⊥\overrightarrow c$,则m=(  )
A.3B.-3C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某学校在自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[160,165),第2组[165,170),第3组[170,175),第4组[175,180),第5组[180,185],得到的频率分布直方图如图所示:
(1)求第3,4,5组的频率;
(2)为了能选拨最优秀的学生,该校决定在笔试成绩高的第组用分层抽样法抽取6名学生进入第二轮面试,则第3,4,5组每组个抽取多少名学生进入第二轮面试?
(3)第(2)问的前提下,学校决定在这6名学生中随机抽取2名学生接受考官甲的面试,求:第4组至少有一名学生被考官甲面试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知一个圆锥的顶点和底面的圆周都在同一个球面上,若球的半径为1,则当圆锥的体积最大时,圆锥的高为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,在直角梯形ABCD中,AD∥BC,AD⊥DC,BC=2AD=2DC,四边形ABEF是正方形,且平面ABEF⊥平面ABCD,M为AF的中点,
(I)求证:AC⊥BM;
(2)求异面直线CE与BM所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.双曲线x2-4y2=4的渐近线方程是(  )
A.y=±4xB.y=±$\frac{1}{4}$xC.y=±2xD.y=±$\frac{1}{2}$x

查看答案和解析>>

同步练习册答案