精英家教网 > 高中数学 > 题目详情
12.渔场中鱼群的最大养殖量为m,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留出适当的空闲量,已知鱼群的年增长量y吨和实际养殖量x吨与空闲率的乘积成正比,比例系数为k(k>0),则鱼群年增长量的最大值是$\frac{km}{4}$.

分析 由鱼群的年增长量y吨和实际养殖量x吨与空闲率的乘积成正比,比例系数为k(k>0).我们根据题意求出空闲率,即可得到y关于x的函数关系式,并指出这个函数的定义域,使用配方法,易分析出鱼群年增长量的最大值.

解答 解:由题意,空闲率为 1-$\frac{x}{m}$,
∴y=kx(1-$\frac{x}{m}$),定义域为(0,m),
y=kx(1-$\frac{x}{m}$)=-$\frac{k}{m}(x-\frac{m}{2})^{2}+\frac{km}{4}$,
因为 x∈(0,m),k>0;
所以当x=$\frac{m}{2}$时,ymax=$\frac{km}{4}$.
故答案为$\frac{km}{4}$.

点评 函数的实际应用题,我们要经过析题→建模→解模→还原四个过程,在建模时要注意实际情况对自变量x取值范围的限制,解模时也要实际问题实际考虑.将实际的最大(小)化问题,利用函数模型,转化为求函数的最大(小)是最优化问题中,最常见的思路之一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x3-x+2$\sqrt{x}$.
(Ⅰ)求函数y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)令g(x)=$\frac{a{x}^{2}+ax}{f(x)-2\sqrt{x}}$+lnx,若函数y=g(x)在(e,+∞)内有极值,求实数a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,对任意t∈(1,+∞),s∈(0,1),求证:$g(t)-g(s)>e+2-\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若圆锥曲线Γ:$\frac{x^2}{m}+\frac{y^2}{5}$=1(m≠0且m≠5)的一个焦点与抛物线y2=8x的焦点重合,则实数m=(  )
A.9B.7C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.一袋中有7个大小相同的小球,其中有2个红球,3个黄球,2个蓝球,从中任取3个小球.
(I)求红、黄、蓝三种颜色的小球各取1个的概率;
(II)设X表示取到的蓝色小球的个数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若正项等比数列{an},已知a1=4且a52=16a2•a6,则$\frac{1}{\sqrt{{a}_{1}}}$+$\frac{2}{\sqrt{{a}_{2}}}$+$\frac{3}{\sqrt{{a}_{3}}}$+…+$\frac{n}{\sqrt{{a}_{n}}}$=2-$\frac{n+2}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.圆C与x轴相切于T(1,0),与y轴正半轴交于两点A、B,且|AB|=2,则圆C的标准方程为(  )
A.(x-1)2+(y-$\sqrt{2}$)2=2B.(x-1)2+(y-2)2=2C.(x+1)2+(y+$\sqrt{2}$)2=4D.(x-1)2+(y-$\sqrt{2}$)2=4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知各项不为零的数列{an}的前n项的和为Sn,且满足Sn=λan-1,若{an}为递增数列,则λ的取值范围为λ<0或λ>1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点为F,过点F的直线与双曲线C交于M,N两点,若仅存在三组|MN|的值,使得|MN|=6a,则双曲线C的渐近线方程为y=$±\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,则该几何体的体积是(  )
A.16B.20C.52D.60

查看答案和解析>>

同步练习册答案