分析 (Ⅰ)由已知利用诱导公式,两角和差的余弦公式,求得tanB的值,可得B的值.
(Ⅱ)求得sinB、cosB的值,利用正弦定理求得sinA的值,可得cosA的值,从而求得sinC=sin(A+B)的值,进而求得△ABC的面积$\frac{1}{2}$ab•sinC的值.
解答 解:(Ⅰ)由已知得-cos(A+B)+cosAcosB-$\sqrt{3}$sinAcosB=0,
即有sinAsinB-$\sqrt{3}$sinAcosB=0,
因为sinA≠0,所以sinB-$\sqrt{3}$cosB=0,又cosB≠0,
所以tanB=$\sqrt{3}$,又0<B<π,所以B=$\frac{π}{3}$.
(Ⅱ)∵$sinB=\frac{{\sqrt{3}}}{2},cosB=\frac{1}{2}$,∵$\frac{a}{sinA}=\frac{b}{sinB}=\frac{{\sqrt{7}}}{{\frac{{\sqrt{3}}}{2}}}=\frac{{2\sqrt{21}}}{3}$,又a=2,
∴$sin{A_{\;}}=\frac{3}{{\sqrt{21}}}=\frac{{\sqrt{21}}}{7}$,∵a<b,∴$cos{A_{\;}}=\frac{{2\sqrt{7}}}{7}$,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{{3\sqrt{21}}}{14}$,
∴$S=\frac{1}{2}absin{C_{\;}}=\frac{{3\sqrt{3}}}{2}$.
点评 本题主要考查诱导公式,两角和差的余弦公式,正弦定理的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | [-1,3] | B. | (-1,3] | C. | [-1,4] | D. | (-1,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6π | B. | 10π | C. | 12π | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com