精英家教网 > 高中数学 > 题目详情
8.某几何体的三视图如图所示,则其体积为(  )
A.4B.$\frac{7}{3}$C.$\frac{4}{3}$D.$\frac{8}{3}$

分析 通过三视图复原的几何体是正四棱锥,结合三视图的数据,求出几何体的体积.

解答 解:由题意三视图可知,几何体是直四棱锥,
底面边长为2的正方形,一条侧棱垂直正方形的一个顶点,长度为2,
所以四棱锥的体积$V=\frac{1}{3}•2•2•2=\frac{8}{3}$.
故选D.

点评 本题是基础题,考查三视图复原几何体的体积的求法,考查计算能力,空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.如图①,这个美妙的螺旋叫做特奥多鲁斯螺旋,是由公元5世纪古希腊哲学家特奥多鲁斯给出的,螺旋由一系列直角三角形组成(图②),第一个三角形是边长为1的等腰直角三角形,以后每个直角三角形以上一个三角形的斜边为直角边,另一个直角边为1.将这些直角三角形在公共顶点处的角依次记为α1,α2,α3,…,则与α1234最接近的角是(  )
参考值:tan55°≈1.428,tan60°≈1.732,tan65°≈2.145,$\sqrt{2}≈1.414$
A.120°B.130°C.135°D.140°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一个几何体的三视图如图所示,其中正视图和侧视图相同,其上部分是半圆,下部分是边长为2的正方形;俯视图是边长为2的正方形及其外接圆.则该几何体的体积为(  )
A.$4+\frac{2π}{3}$B.$4+\frac{{2\sqrt{2}π}}{3}$C.$8+\frac{{4\sqrt{2}π}}{3}$D.$8+\frac{{8\sqrt{2}π}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在平面内的动点(x,y)满足不等式$\left\{\begin{array}{l}x+y-3≤0\\ x-y+1≤0\end{array}\right.$,则z=2x+y的最大值是(  )
A.-4B.4C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某手机厂商推出一款6寸大屏手机,现对500名该手机用户(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:
女性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数2040805010
男性用户分值区间[50,60)[60,70)[70,80)[80,90)[90,100]
频数4575906030
(1)完成下列频率分布直方图,并指出女性用户和男性用户哪组评分更稳定(不计算具体值,给出结论即可);

(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意抽取3名用户,求3名用户中评分小于90分的人数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax-lnx.
(1)过原点O作曲线y=f(x)的切线,求切点的横坐标;
(2)对?x∈[1,+∞),不等式f(x)≥a(2x-x2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数$f(x)=\left\{\begin{array}{l}cosx,x≤a\\ \frac{1}{x},x>a\end{array}\right.$的值域为[-1,1],则实数a的取值范围是(  )
A.[1,+∞)B.(-∞,-1]C.(0,1]D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.计算下列各式:
(1)已知tanα=2,求$\frac{cosα+sinα}{cosα-sinα}$值;
(2)化简f(α)=$\frac{{sin(α-\frac{π}{2})cos(\frac{π}{2}-α)tan(π-α)}}{tan(π+α)sin(π+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知动圆P过点A(2,0),且在y轴上截得的弦长为4.
(1)求动圆圆心P的轨迹C的方程;
(2)设A(x1,y1),B(x2,y2)是曲线C上两个动点,其中x1≠x2,且x1+x2=4,线段AB的垂直平分线l与x轴相交于点Q,求△ABQ面积的最大值.

查看答案和解析>>

同步练习册答案