【题目】某公司租地建仓库,每月土地占用费y1与车库到车站的距离x成反比,而每月的库存货物的运费y2与车库到车站的距离x成正比.如果在距离车站10公里处建立仓库,这两项费用y1和y2分别为2万元和8万元.求若要使得这两项费用之和最小时,仓库应建在距离车站多远处?此时最少费用为多少万元?
【答案】解:设 ,y2=k2x,由题意可得: ,8=10k2 , 解得k1=20, .设这两项费用之和为f(x),则f(x)= + .
∵x>0,∴f(x) =8,
当且仅当 ,解得x=5时取得等号.
答:若要使得这两项费用之和最小时,仓库应建在距离车站8公里处,此时最少费用为8万元.
【解析】设 ,y2=k2x,由题意可得: ,8=10k2 , 解得k1 , k2 . 设这两项费用之和为f(x),则f(x)= .利用基本不等式即可得出.
【考点精析】关于本题考查的基本不等式在最值问题中的应用,需要了解用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】若不等式(m﹣1)x2+(m﹣1)x+2>0的解集是R,则m的范围是( )
A.(1,9)
B.(﹣∞,1]∪(9,+∞)
C.[1,9)
D.(﹣∞,1)∪(9,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为 (其中为参数).以坐标原点为极点, 轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线的极坐标方程为.
(1)把曲线的方程化为普通方程, 的方程化为直角坐标方程;
(2)若曲线, 相交于两点, 的中点为,过点做曲线的垂线交曲线于两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=ax2+bx+c.
(1)若a>b>c,且f(1)=0,证明f(x)的图象与x轴有2个交点;
(2)在(1)的条件下,是否存在m∈R,使得f(m)=﹣a成立时,f(m+3)为正数,若存在,证明你的结论,若不存在,请说明理由;
(3)若对x1 , x2∈R,且x1<x2 , f(x1)≠f(x2),方程f(x)= [f(x1)+f(x2)]有两个不等实根,证明必有一个根属于(x1 , x2).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知圆及点, .
(1)若直线平行于,与圆相交于, 两点, ,求直线的方程;
(2)在圆C上是否存在点P,使得 ?若存在,求点P的个数;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知长方体ABCD-A1B1C1D1中,AB=3,BC=2,CC1=5,E是棱CC1上不同于端点的点,且.
(1) 当∠BEA1为钝角时,求实数λ的取值范围;
(2) 若λ=,记二面角B1-A1B-E的的大小为θ,求|cosθ|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一块弓形余布料EMF,点M为弧的中点,其所在圆O的半径为4 dm(圆心O在弓形EMF内),∠EOF=.将弓形余布料裁剪成尽可能大的矩形ABCD(不计损耗), AD∥EF,且点A、D在弧上,设∠AOD=.
(1)求矩形ABCD的面积S关于的函数关系式;
(2)当矩形ABCD的面积最大时,求cos的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班有24名男生和26名女生,数据a1 , a2 , …,a50是该班50名学生在一次数学学业水平模拟考试的成绩,下面的程序用来同时统计全班成绩的平均数:A,男生平均分:M,女生平均分:W;为了便于区别性别,输入时,男生的成绩用正数,女生的成绩用其成绩的相反数,那么在图里空白的判断框和处理框中,应分别填入下列四个选项中的( )
A.T>0?,
B.T<0?, ??
C.T<0?,
D.T>0?,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com