精英家教网 > 高中数学 > 题目详情

【题目】如图,已知长方体ABCD-A1B1C1D1中,AB=3,BC=2,CC1=5,E是棱CC1上不同于端点的点,且

(1) 当BEA1为钝角时,求实数λ的取值范围;

(2) 若λ,记二面角B1-A1B-E的的大小为θ,求|cosθ|.

【答案】(1)().(2)

【解析】

试题解析:

解:(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立如图所示的空间直角坐标系.

由题设,知B(2,3,0),A1(2,0,5),C(0,3,0),C1(0,3,5).

因为,所以E(0,3,5λ).

从而=(2,0,-5λ),=(2,-3,5-5λ). 2分

BEA1为钝角时,cosBEA1<0,

所以<0,即2×2-5λ(5-5λ)<0,

解得λ

即实数λ的取值范围是() 5分

(2)当λ时,=(2,0,-2),=(2,-3,3).

设平面BEA1的一个法向量为n1=(x,y,z),

取x=1,得y=,z=1,

所以平面BEA1的一个法向量为n1=(1,,1). 7分

易知,平面BA1B1的一个法向量为n2=(1,0,0).

因为cos< n1,n2>=

从而|cosθ|= 10分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1}.
(1)当m=3时,求集合A∩B,A∪B;
(2)若BA,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数其中实数为常数且.

I)求函数的单调区间;

II)若函数既有极大值,又有极小值,求实数的取值范围及所有极值之和;

III)在(II)的条件下,记分别为函数的极大值点和极小值点,

求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C: 的长轴是短轴的两倍,点在椭圆上.不过原点的直线l与椭圆相交于A、B两点,设直线OA、l、OB的斜率分别为,且恰好构成等比数列,记△的面积为S.

(1)求椭圆C的方程.

2)试判断是否为定值?若是,求出这个值;若不是,请说明理由?

(3)求S的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司租地建仓库,每月土地占用费y1与车库到车站的距离x成反比,而每月的库存货物的运费y2与车库到车站的距离x成正比.如果在距离车站10公里处建立仓库,这两项费用y1和y2分别为2万元和8万元.求若要使得这两项费用之和最小时,仓库应建在距离车站多远处?此时最少费用为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(Ⅰ)求椭圆的方程.

(Ⅱ)若 是椭圆上两个不同的动点,且使的角平分线垂直于轴,试判断直线的斜率是否为定值?若是,求出该值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某环保节能设备生产企业的产品供不应求,已知某种设备的月产量x(套)与每套的售价y1(万元)之间满足关系式y1=150﹣ x,每套的售价不低于90万元;月产量x(套)与生产总成本y2(万元)之间满足关系式y2=600+72x,则月生产多少套时,每套设备的平均利润最大?最大平均利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且 ,则数列中的为(

A. B. C. D.

查看答案和解析>>

同步练习册答案