精英家教网 > 高中数学 > 题目详情
8.求下列各角的正弦、余弦值:
(1)$\frac{7}{2}$π
(2)$\frac{23π}{6}$
(3)-$\frac{9π}{4}$
(4)-$\frac{7π}{3}$.

分析 直接利用诱导公式以及特殊角的三角函数求解即可.

解答 解:(1)sin($\frac{7}{2}$π)=-sin$\frac{π}{2}$=-1,
cos($\frac{7}{2}$π)=cos$\frac{π}{2}$=0,

(2)sin$\frac{23π}{6}$=-sin$\frac{π}{6}$=-$\frac{1}{2}$.
cos$\frac{23π}{6}$=cos$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$
(3)sin(-$\frac{9π}{4}$)=-sin$\frac{π}{4}$=-$\frac{\sqrt{2}}{2}$,
cos(-$\frac{9π}{4}$)=cos$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$,
(4)sin(-$\frac{7π}{3}$)=-sin$\frac{π}{3}$=-$\frac{\sqrt{3}}{2}$.
cos(-$\frac{7π}{3}$)=cos$\frac{π}{3}$=$\frac{1}{2}$.

点评 本题考查三角函数的化简求值诱导公式的应用,特殊角的三角函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足:a1=1,3a${\;}_{n+1}^{2}$+3a${\;}_{n}^{2}$-10anan+1=3,an<an+1(n∈N+).
(Ⅰ)证明:{3an+1-an}是等比数列;
(Ⅱ)设数列{an}的前n项和为Sn,求证:$\frac{{n}^{2}}{{S}_{n}}$≤$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.将边长为2的正方形ABCD沿对角线BD折叠,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=$\sqrt{2}$.
(1)证明:BD⊥CE;
(2)求AE与平面BDE所成角的大小;
(3)直线BE上是否存在一点M,使得CM∥平面ADE,若存在,求点M的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l1:y=k(x-1)与椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)交于M、N两点,点P是线段MN的中点,且直线OP的斜率为-$\frac{3}{4k}$(k∈R,k≠0),其中O为坐标原点.
(1)求椭圆C的离心率;
(2)若椭圆C的焦距为2c=2,AB是直线l2:y=kx与椭圆C相交所得的弦,试判断$\frac{|AB{|}^{2}}{|MN|}$是否为定值?若是定值,请求出这个定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在棱长都相等的四面体ABCD中,点E是棱AD的中点.
(1)设侧面ABC与底面BCD所成角为α,求tanα.
(2)设CE与底面BCD所成角为β,求cosβ.
(3)在直线BC上是否存在着点F,使直线AF与CE所成角为90°,若存在,试确定F点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某茶厂现有三块茶园,每块茶园的茶叶估值为6万元.根据以往经验:今年5月12日至14日是采茶的最佳时间,在此期间,若遇到下雨,当天茶园的茶叶估值减少为前一天的一半.现有两种采摘方案:
方案①:茶厂不额外聘请工人,一天采摘一块茶园的茶叶;
方案②:茶厂额外聘请工人,在12日采摘完全部茶叶,额外聘请工人的成本为3.2万元.
根据天气预报,该地区5月12日不降雨,13日和14日这两天降雨的概率均为40%.每天是否下雨不相互影响.
(Ⅰ)若采用方案①,求茶厂14日当天采茶的预期收益;
(Ⅱ)从统计学的角度分析,茶厂采用哪种方案更合理.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知实数x,y满足x2+y2-4x+1=0.
(1)求x2+y2的最值;
(2)求$\frac{y}{x+1}$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知正△PAB和菱形ABCD,面PAB⊥面ABCD,∠BAD=60°.
(1)求证:AB⊥PD; 
(2)求PC与平面PAD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.四面体ABCD中,点G1,G2,G3,G4分别是△BCD,△ACD,△ABD,△ABC的重心.求证:AG1,BG2,CG3,DG4交于一点.

查看答案和解析>>

同步练习册答案