精英家教网 > 高中数学 > 题目详情
8.已知数列{an}是等差数列,且a1+a4+a7=2π,则tan(a2+a6)的值为(  )
A.$\sqrt{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\sqrt{3}$D.$-\frac{{\sqrt{3}}}{3}$

分析 由等差数列的性质结合已知求得a4,再由a2+a6=2a4求其正切值.

解答 解:∵数列{an}是等差数列,且a1+a4+a7=2π,
∴3a4=2π,${a}_{4}=\frac{2π}{3}$,
∴tan(a2+a6)=tan2a4=tan$\frac{4π}{3}$=$\sqrt{3}$.
故选:A.

点评 本题考查等差数列的性质,考查了三角函数值的求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设数列{an}的前n项和为Sn=n2,则sin($\frac{{a}_{8}-12}{2}$π+$\frac{π}{3}$)的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合A=R,B=R,若f:x→2x-1是从集合A到B的一个映射,则B中的元素3对应A中的元素为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)化简$\frac{sin(2π-α)cos(π+α)}{cos(α-π)cos(\frac{π}{2}-α)}$
(2)tanx=2,求2sin2x-sinxcosx+cos2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2cosx(sinx+cosx)-1,x∈R.
(1)求函数f(x)的单调递减区间;
(2)求函数f(x)在区间$[-\frac{π}{4},\frac{π}{4}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知全集U={1,3,5,7,9},集合A={3,5,7},B={0},则(∁UA)∪B等于(  )
A.{0,1,3,5,7,9}B.{1,9}C.{0,1,9}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$\overrightarrow a=3\overrightarrow{e_1}-2\overrightarrow{e_2},\overrightarrow b=4\overrightarrow{e_1}+\overrightarrow{e_2}$,其中$\overrightarrow{e_1}=({1,0}),\overrightarrow{e_2}=({0,1})$,求:
(1)$\overrightarrow a•\overrightarrow b$;$|{\overrightarrow a+\overrightarrow b}$|;
(2)$\overrightarrow a$与$\overrightarrow b$的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}中,a1=a2=1,an+2=$\left\{\begin{array}{l}2{a_n},n为偶数\\{a_n}+1,n为奇数\end{array}$,设Tn=a1+a3+…+a2n-1,若Tn=a10-1,则n等于(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.关于x的不等式ax2+(a-2)x-2≥0(a∈R)
(1)已知不等式的解集为(-∞,-1]∪[2,+∞),求a的值;
(2)解关于x的不等式ax2+(a-2)x-2≥0.

查看答案和解析>>

同步练习册答案