精英家教网 > 高中数学 > 题目详情

设函数f(x)=(x>0),数列{an}满足a1=1,anf (n∈N*,且n≥2).
(1)求数列{an}的通项公式;
(2)设Tna1a2a2a3a3a4a4a5+…+(-1)n-1·anan+1,若Tntn2n∈N*恒成立,求实数t的取值范围.

(1)an(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

知{an}是首项为-2的等比数列,Sn是其前n项和,且S3,S2,S4成等差数列,
(1)求数列{an}的通项公式.
(2)若bn=log2|an|,求数列{}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是等差数列,且.
(1)求数列的通项公式;  (2)令,求数列前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列{an}和等比数列{bn}中,a1=0,a3=2,bn=2an+1(n∈N*).
(1)求数列{bn}及{an}的通项公式;
(2)若cn=an·bn,求数列{cn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an}的前n项和为Sn=2an-2,数列{bn}是首项为a1,公差不为零的等差数列,且b1b3b11成等比数列.
(1)求数列{an}与{bn}的通项公式;
(2)求证: <5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}满足:a2=5,a4a6=22,数列{bn}满足b1+2b2+…
+2n-1bnnan,设数列{bn}的前n项和为Sn.
(1)求数列{an},{bn}的通项公式;
(2)求满足13<Sn<14的n的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}的前n项和Sn满足Snan n-1=2(n∈N*),设cn=2nan.
(1)求证:数列{cn}是等差数列,并求数列{an}的通项公式.
(2)按以下规律构造数列{bn},具体方法如下:
b1c1b2c2c3b3c4c5c6c7,…,第nbn由相应的{cn}中2n-1项的和组成,求数列{bn}的通项bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列是递增的等差数列,且
(1)求数列的通项公式;
(2)求数列的前项和的最小值;
(3)求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}是递增数列,且满足a4·a7=15,a3+a8=8.
(1)求数列{an}的通项公式;
(2)令bn(n≥2),b1,求数列{bn}的前n项和Sn.

查看答案和解析>>

同步练习册答案