精英家教网 > 高中数学 > 题目详情

在数列{an}和等比数列{bn}中,a1=0,a3=2,bn=2an+1(n∈N*).
(1)求数列{bn}及{an}的通项公式;
(2)若cn=an·bn,求数列{cn}的前n项和Sn.

(1)an=n-1(2)Sn=4+(n-2)·2n+1

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为数列的前项和,对任意的,都有为常数,且.
(1)求证:数列是等比数列;
(2)设数列的公比,数列满足,求数列的通项公式;
(3)在满足(2)的条件下,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知两个等比数列{an},{bn},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若数列{an}唯一,求a的值;
(2)是否存在两个等比数列{an},{bn},使得b1-a1,b2-a2,b3-a3,b4-a4成公差不为0的等差数列?若存在,求{an},{bn}的通项公式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列{an}的首项为a1,公差d=-1,前n项和为Sn.
(1)若S5=-5,求a1的值.
(2)若Sn≤an对任意正整数n均成立,求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列(常数),其前项和为 
(1)求数列的首项,并判断是否为等差数列,若是求其通项公式,不是,说明理由;
(2)令的前n项和,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=(x>0),数列{an}满足a1=1,anf (n∈N*,且n≥2).
(1)求数列{an}的通项公式;
(2)设Tna1a2a2a3a3a4a4a5+…+(-1)n-1·anan+1,若Tntn2n∈N*恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为.
(1)请写出数列的前项和公式,并推导其公式;
(2)若,数列的前项和为,求的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在公差为d的等差数列{an}中,已知
a1=10,且a1,2a2+2,5a3成等比数列.
(1)求dan
(2)若d<0,求|a1|+|a2|+…+|an|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知集合,对于数列.
(Ⅰ)若三项数列满足,则这样的数列有多少个?
(Ⅱ)若各项非零数列和新数列满足首项),且末项,记数列的前项和为,求的最大值.

查看答案和解析>>

同步练习册答案