精英家教网 > 高中数学 > 题目详情

已知数列(常数),其前项和为 
(1)求数列的首项,并判断是否为等差数列,若是求其通项公式,不是,说明理由;
(2)令的前n项和,求证:

(1)  (2)证明过程详见解析

解析试题分析:
(1)当n=1,利用带入即可得到的值.当时,利用,整理可得到,再用叠乘法即可求出,即可证明是等比数列.
(2)由(2)得到,带入即可得到通项公式,考虑利用裂项求和得到(即分离分母即可得到),即可得到.再利用,即可证明.
试题解析:
(1)当n=1时,,则……①
时,……②,
则①-②得

,
检验n=1时也符合,故,则,所以为等差数列.综上是等差数列且.
(2)由(1)
,

,
所以,因为,所以.
考点:等差数列 前n项和 裂项求和

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列{an}满足a1+a2+…+an=n2(n∈N*).
(1)求数列{an}的通项公式;
(2)对任意给定的k∈N*,是否存在p,r∈N*(k<p<r)使成等差数列?若存在,用k分别表示p和r(只要写出一组);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

己知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列的前n项和,若Tn¨对恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是等差数列,首项,前项和为.令,的前项和.数列是公比为的等比数列,前项和为,且.
(1)求数列的通项公式;
(2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an}满足a1=1,an+1=(n2+n-λ)an(n=1,2,…),λ是常数.
(1)当a2=-1时,求λ及a3的值.
(2)数列{an}是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列{an}和等比数列{bn}中,a1=0,a3=2,bn=2an+1(n∈N*).
(1)求数列{bn}及{an}的通项公式;
(2)若cn=an·bn,求数列{cn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列中,,其前n项和为,等比数列的各项均为正数,,公比为q,且.
(1)求
(2)设数列满足,求的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设无穷数列的首项,前项和为),且点在直线上(为与无关的正实数).
(1)求证:数列)为等比数列;
(2)记数列的公比为,数列满足,设,求数列的前项和
(3)若(2)中数列{Cn}的前n项和Tn时不等式恒成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的每一项都是正数,,,且成等差数列,成等比数列,.
(Ⅰ)求的值;
(Ⅱ)求数列的通项公式;
(Ⅲ)证明:对一切正整数,有.

查看答案和解析>>

同步练习册答案