精英家教网 > 高中数学 > 题目详情

已知是等差数列,首项,前项和为.令,的前项和.数列是公比为的等比数列,前项和为,且.
(1)求数列的通项公式;
(2)证明:.

(1) ;(2)见解析.

解析试题分析:(1)首先设等差数列的公差为,由已知建立的方程,求得,写出等差数列的通项公式;进一步确定等比数列的公比,求得等比数列的通项公式.
(2)求得,将不等式加以转化成
即证:.注意到这是与自然数有关的不等式证明问题,故考虑应用数学归纳法.
很明显时,,因此用数学归纳法证明:当时,.
试题解析:(1)设等差数列的公差为,因为
所以


解得,所以                    4分
所以
所以                              6分
(2)由(1)知,
要证
只需证
即证:                             8分
时,
下面用数学归纳法证明:当时,
(1)当时,左边,右边,左右,不等式成立
(2)假设
时,
时不等式成立
根据(1)(2)可知:当时,
综上可知:对于成立
所以                      12分
考点:等差数列、等比数列的通项公式及其求和公式,数学归纳法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列的前n项和为,且成等比数列,当时,
(1)求证:当时,成等差数列;
(2)求的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列{an}、{bn}、{cn}满足:bn=an-an+2,cn=an+2an+1+3an+2(n=1,2,3,…),求证:{an}为等差数列的充分必要条件是{cn}为等差数列且bn≤bn+1(n=1,2,3,…).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)已知两个等比数列{an},{bn},满足a1=a(a>0),b1-a1=1,b2-a2=2,b3-a3=3,若数列{an}唯一,求a的值;
(2)是否存在两个等比数列{an},{bn},使得b1-a1,b2-a2,b3-a3,b4-a4成公差不为0的等差数列?若存在,求{an},{bn}的通项公式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q=.
(1)求an与bn.
(2)证明:++…+<.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列{an}的首项为a1,公差d=-1,前n项和为Sn.
(1)若S5=-5,求a1的值.
(2)若Sn≤an对任意正整数n均成立,求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列(常数),其前项和为 
(1)求数列的首项,并判断是否为等差数列,若是求其通项公式,不是,说明理由;
(2)令的前n项和,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为.
(1)请写出数列的前项和公式,并推导其公式;
(2)若,数列的前项和为,求的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设各项均为正数的数列的前项和为,满足恰好是等比数列的前三项.
(Ⅰ)求数列的通项公式;
(Ⅱ)记数列的前项和为,若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案