精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数f(x)图象上相邻两对称轴间的距离为
π
2

(1)求f(x)的解析式及单减区间;
(2)△ABC的三内角为A、B、C,若sin2A=sin2B+sin2C-sinBsinC,求f(A).
考点:余弦定理,正弦函数的单调性,由y=Asin(ωx+φ)的部分图象确定其解析式,正弦定理
专题:解三角形
分析:(1)函数f(x)解析式变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,根据函数为偶函数,得到f(0)=±2,确定出φ的值,利用函数f(x)图象上相邻两对称轴间的距离为
π
2
得到周期为π,求出ω的值,确定出f(x)解析式,即可求出其单调减区间;
(2)已知等式利用正弦定理化简,再利用余弦定理列出关系式,求出cosA的值,确定出A的度数,代入f(x)解析式即可求出f(A)的值.
解答: 解:(1)函数f(x)=
3
sin(ωx+φ)-cos(ωx+φ)=2sin(ωx+φ-
π
6
)为偶函数,
∴f(0)=2sin(φ-
π
6
)=±2,即sin(φ-
π
6
)=±1,
∴φ-
π
6
=kπ+
π
2
,即φ=kπ+
3

∵φ∈(0,π),
∴φ=
3

∵函数f(x)图象上相邻两对称轴间的距离为
π
2

∴f(x)的周期T=π,即ω=2,
∴f(x)=2sin(2x+
π
2
)=2cos2x,
则其减区间为(kπ,kπ+
π
2
)(k∈Z);
(2)由sin2A=sin2B+sin2C-sinBsinC,利用正弦定理化简得:a2=b2+c2-bc,
∴由余弦定理得:a2=b2+c2-2bccosA=b2+c2-2bc,即cosA=
1
2

∴A=
π
3

则f(A)=2cos
3
=-1.
点评:此题考查了正弦、余弦定理,偶函数的性质,以及余弦函数的单调性,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

图中最左边的几何体由一个圆柱挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得.现用一个竖直的平面去截这个几何体,则截面图形可能是(  )
A、(1)(2)
B、(1)(3)
C、(1)(4)
D、(1)(5)

查看答案和解析>>

科目:高中数学 来源: 题型:

e1
e2
是正交单位向量,如果
OA
=2
e1
+m
e2
OB
=n
e1
-
e2
OC
=5
e1
-
e2
,若A,B,C三点在一条直线上,且m=2n,求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
8
+
y2
4
=1.
(1)直线l:y=x+m与椭圆E有两个公共点,求实数m的取值范围.
(2)以椭圆E的焦点F1、F2为焦点,经过直线l′:x+y=9上一点P作椭圆C,当C的长轴最短时,求C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P到点F1(0,-2),F2(0,2)的距离之和为12,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简:(2a
1
4
b
1
3
)(-3a -
1
2
b 
2
3
)÷(-
1
4
a -
1
4
b -
2
3

(2)求值:(log43+log83)(log32+log92)-log 
1
2
432

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,满足f(
1
2
)=2,且对于任意实数m,n有f(m+n)=f(m)+f(n)-1,当x>-
1
2
时,f(x)>0.
(1)求f(-
1
2
)的值;
(2)求证f(x)在定义域R上是单调递增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)某同学在一次研究性学习中发现,以下五个式子的值都等于一个常数.
sin213°+cos217°-sin13°cos17°,sin215°+cos215°-sin15°cos15°,sin218°+cos212°-sin18°cos12°,sin2(-18°)+cos248°-sin(-18°)cos48°,sin2(-25°)+cos255°-sin(-25°)cos55°.
(1)试从上述五个式子中选择一个,求出这个常数.
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
(Ⅱ)求函数y=2+2sinxcosx+sinx+cosx,x∈[-
π
2
π
2
]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(π+α)=-
1
3
,α是第二象限角,分别求下列各式的值:
(Ⅰ)cos(2π-α);
(Ⅱ)tan(α-7π).

查看答案和解析>>

同步练习册答案