精英家教网 > 高中数学 > 题目详情
12.设全集为R,集合A=(-∞,2],集合B=[2,+∞),求:
(1)∁RA,∁RB;
(2)∁RA∪∁RB;
(3)∁RA∩∁RB.

分析 根据已知中的集合A,B,结合集合的交集,并集,补集的定义,可得答案.

解答 解:∵全集为R,集合A=(-∞,2],集合B=[2,+∞),
(1)∁RA=(2,+∞),∁RB=(-∞,2);
(2)∁RA∪∁RB=(-∞,2)∪(2,+∞);
(3)∁RA∩∁RB=∅.

点评 本题考查的知识点是集合的交集,并集,补集运算,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设x>0,且x2+$\frac{{y}^{2}}{2}$=1,求x$\sqrt{1+{y}^{2}}$的最大值,并指出取等号时x,y的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.从n件不同的物品中,任取1件,2件,3件…n-1件,n件,其取法一共有2n-1种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设数列{an}的前n项和为Sn,如果a1=$\frac{1}{3}$,Sn=$\frac{n+2}{3}$an,那么an=$\frac{n(n+1)}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an}(an>0)的首项为1,且前n项和Sn满足Sn-Sn-1=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$(n≥2).
(1)求数列{an}的通项公式;
(2)设数列{$\frac{1}{{S}_{n}}$}的前n项和为Tn,求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.5个人站成一排照像,甲、乙两人恰好站在两边的概率是(  )
A.$\frac{1}{10}$B.$\frac{1}{20}$C.$\frac{1}{120}$D.$\frac{1}{60}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}满足:a1=1,an=n+an-1(n≥2,n∈N*),则数列{an}的通项公式为$\frac{n(n+1)}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在数列{an}中,若an=1-$\frac{1}{{2}^{n}}$,Sn=$\frac{321}{64}$,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=ax2+bx+c(a≠0),g(x)=$\frac{k}{x}$(k≠0).定义函数h(x)=f(x)•g(x),且函数h(x)为定义域上的奇函数,f(0)=4,g(1)=1.
(1)当a=4时,h(x)=4x+$\frac{4}{x}$;
(2)若函数h(x)在区间(-3,-2)上单调递增,在区间(1,2)上单调递减,且0<a<$\frac{4}{3}$,则函数h(x)在区间[1,3]上的最大值为5;最小值为4.

查看答案和解析>>

同步练习册答案