【题目】如图,在三棱台
中,
平面
,
,
,
分别为
,
的中点.
(1)求证:
平面
;
(2)若
且
,求二面角
的大小.
![]()
【答案】(1)见解析(2)![]()
【解析】试题分析:(1)利用中位线,有
,所以平面
平面
,所以
平面
;(2)易得
,
,
两两垂直,以此建立空间直角坐标系,分别计算平面
的法向量,利用法向量夹角来计算二面角
的余弦值为
,所以二面角为
.
试题解析:
(1)证明:连接
,
,
设
与
交于点
,在三棱台
中,
,则
,
而
是
的中点,
,
则
,所以四边形
是平行四边形,
是
的中点,
在△
中,
是
的中点,则
,
又
平面
,
平面
,
所以
平面
.
(2)解:由
平面
,可得
平面
,
而
,
,则
,
所以
,
,
两两垂直,
故以点
为坐标原点,
,
,
所在的直线分别为
,
,
轴建立如图所示的空间直角坐标系.
设
,则
,
,
,
,
,
,
,
则平面
的一个法向量为
,
设平面
的法向量为
,则
即![]()
取
,则
,
,
,
,易得二面角
为锐角,
所以二面角
的大小为
.
![]()
科目:高中数学 来源: 题型:
【题目】“一带一路”近年来成为了百姓耳熟能详的热门词汇,对于旅游业来说,“一带一路”战略的提出,让“丝路之旅”超越了旅游产品、旅游线路的简单范畴,赋予了旅游促进跨区域融合的新理念. 而其带来的设施互通、经济合作、人员往来、文化交融更是将为相关区域旅游发展带来巨大的发展机遇.为此,旅游企业们积极拓展相关线路;各地旅游主管部门也在大力打造丝路特色旅游品牌和服务.某市旅游局为了解游客的情况,以便制定相应的策略. 在某月中随机抽取甲、乙两个景点10天的游客数,统计得到茎叶图如下:
![]()
(1)若将图中景点甲中的数据作为该景点较长一段时期内的样本数据,以每天游客人数频率作为概率.今从这段时期内任取4天,记其中游客数超过130人的天数为
,求概率
;
(2)现从上图20天的数据中任取2天的数据(甲、乙两景点中各取1天),记其中游客数不低于125且不高于135人的天数为
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足c cosB=(2a+b)cos(π﹣C).
(1)求角C的大小;
(2)若c=4,△ABC的面积为
,求a+b的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校在今年的自主招生考试成绩中随机抽取100名考生的笔试成绩,分为5组制出频率分布直方图如图所示.
![]()
![]()
(1)求
的值;
(2)该校决定在成绩较好的3、4、5组用分层抽样抽取6名学生进行面试,则每组应各抽多少名学生?
(3)在(2)的前提下,已知面试有4位考官,被抽到的6名学生中有两名被指定甲考官面试,其余4名则随机分配给3位考官中的一位对其进行面试,求这4名学生分配到的考官个数
的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于数列有下列命题:
①数列{an}的前n项和为Sn , 且Sn=an﹣1(a∈R),则{an}为等差或等比数列;
②数列{an}为等差数列,且公差不为零,则数列{an}中不会有am=an(m≠n),
③一个等差数列{an}中,若存在ak+1>ak>0(k∈N*),则对于任意自然数n>k,都有an>0;
④一个等比数列{an}中,若存在自然数k,使akak+1<0,则对于任意n∈N* , 都有anan+1<0,
其中正确命题的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点在x轴上,短轴长为4,离心率为
.
(1)求椭圆的标准方程;
(2)若直线l过该椭圆的左焦点,交椭圆于M、N两点,且
,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若
(acosB+bcosA)=2csinC,a+b=8,且△ABC的面积的最大值为4
,则此时△ABC的形状为( )
A.等腰三角形
B.正三角形
C.直角三角形
D.钝角三角形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}中,a1=1,且a2+2,a3 , a4﹣2成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=
,求数列{bn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,AB⊥BC侧面PAB⊥底面ABCD,PA=AD=AB=2,BC=4. ![]()
(1)若PB中点为E.求证:AE∥平面PCD;
(2)若∠PAB=60°,求直线BD与平面PCD所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com