精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列{an}中,a1=1,且a2+2,a3 , a4﹣2成等比数列.
(1)求数列{an}的通项公式;
(2)若bn= ,求数列{bn}的前n项和Sn

【答案】
(1)解:由a2+2,a3,a4﹣2成等比数列,

=(a2+2)(a4﹣2),

(1+2d)2=(3+d)(﹣1+3d),

d2﹣4d+4=0,解得:d=2,

∴an=1+2(n﹣1)=2n﹣1,

数列{an}的通项公式an=2n﹣1


(2)解:bn= = = ),

Sn= [(1﹣ )+( )+…+( )],

= (1﹣ ),

=

数列{bn}的前n项和Sn,Sn=


【解析】(1)由a2+2,a3 , a4﹣2成等比数列, =(a2+2)(a4﹣2),根据等差数列的通项公式求得d2﹣4d+4=0,即可求得d=2,数列{an}的通项公式;(2)bn= = = ),利用“裂项法”即可求得数列{bn}的前n项和Sn
【考点精析】根据题目的已知条件,利用数列的前n项和的相关知识可以得到问题的答案,需要掌握数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形为等腰梯形, ,将沿折起,使得平面平面的中点,连接 (如图2).

(1)求证: ;

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台中, 平面 分别为 的中点.

(1)求证: 平面

(2)若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的通项公式为an=﹣n+p,数列{bn}的通项公式为bn=2n5 , 设cn= ,若在数列{cn}中c8>cn(n∈N* , n≠8),则实数p的取值范围是(
A.(11,25)
B.(12,16]
C.(12,17)
D.[16,17)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知圆心在x轴上、半径为2的圆C位于y轴右侧,且与直线 相切.
(1)求圆C的方程;
(2)在圆C上,是否存在点M(m,n),使得直线l:mx+ny=1与圆O:x2+y2=1相交于不同的两点A,B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其导函数为.

(1)设,若函数上有且只有一个零点,求的取值范围;

(2)设,且,点是曲线上的一个定点,是否存在实数,使得成立?证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=1,an+1=1﹣ ,bn= ,其中n∈N*
(1)求证:数列{bn}为等差数列;
(2)设cn=bn+1 ,数列{cn}的前n项和为Tn , 求Tn
(3)证明:1+ + +…+ ≤2 ﹣1(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知随机变量ξ的概率分布如下,则P(ξ=10)=( )

ξ

1

2

3

4

5

6

7

8

9

10

P

m


A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某特色餐馆开通了美团外卖服务,在一周内的某特色菜外卖份数(份)与收入(元)之间有如下的对应数据:

外卖份数(份)

2

4

5

6

8

收入(元)

30

40

60

50

70

(1)画出散点图;

(2)求回归直线方程;

(3)据此估计外卖份数为12份时,收入为多少元.

注:①参考公式:线性回归方程系数公式

②参考数据:

查看答案和解析>>

同步练习册答案