精英家教网 > 高中数学 > 题目详情
(x2+
a2
x2
+2a)4展开式的常数项为280,则正数a=
 
考点:二项式系数的性质
专题:二项式定理
分析:化简(x2+
a2
x2
+2a)4=(x+
a
x
)
8
,利用二项式的展开式通项Tr+1,求出常数项,即得a的值.
解答: 解:∵(x2+
a2
x2
+2a)4=(x+
a
x
)
8

展开式的通项为Tr+1=
C
r
8
•x8-r(
a
x
)
r
=
C
r
8
•x8-2r•ar
令8-2r=0,解得r=4;
∴常数项T5=
C
4
8
•a4=70a4=280,
∴a4=4,
又a>0,
∴a=
2

故答案为:
2
点评:本题考查了利用二项式展开式的通项公式求常数项的应用问题,是基础题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=ax2+bx+c(a,b,c∈R)若a=c,则f(x)的图象不可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设不等式|2x-1|<1的解集为M,且a∈M,b∈M,试比较ab+1与a+b的大小;
(2)若a,b,c为正实数且满足a+2b+3c=6,求
a+1
+
2b+1
+
3c+1
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,满足a1=1,且an+1=(1+
1
n2+n
)an+
1
2n
(n≥1,且n∈N*),用数学归纳法证明:an≥2(n≥2,且n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:

将n2个数排成如下所示的正方形数阵:
a11      a12      a13       a14       a15
a21      a22      a23       a24       a25
a31      a32      a33       a34       a35
a41      a42      a43        a44       a35
a51      a52      a53       a54       a55

已知第一行a11,a12,a13,a14,a15,…成等差数列,而每一列a1j,a2j.a3j,a4j,a5j,…an(1≤j≤n)都成等比数列,且每个公比全相等.若a24=4,a41=-2,a43=10,则a11×a55的值为(  )
A、16B、-16
C、11D、-11

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,现有一迷失方向的小青蛙在3处,它每跳动一次可以等可能地进入相邻的任意一格(若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机会进入1,2,4,5处),则它在第三次跳动后,首次进入5处的概率是(  )
A、
3
16
B、
1
4
C、
1
6
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x
+lnx,比较f(2)、f(e)、f(3)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足cos2A=-
1
4

(1)求cosA的值;
(2)当c=2,2sinC=sinA时,求a和b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边长分别为a,b,c,tanA=
1
4
,tanB=
3
5

(1)求角C的大小;
(2)若△ABC中最长的边为
17
,求最短边的长.

查看答案和解析>>

同步练习册答案