精英家教网 > 高中数学 > 题目详情
如图所示,现有一迷失方向的小青蛙在3处,它每跳动一次可以等可能地进入相邻的任意一格(若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机会进入1,2,4,5处),则它在第三次跳动后,首次进入5处的概率是(  )
A、
3
16
B、
1
4
C、
1
6
D、
1
2
考点:列举法计算基本事件数及事件发生的概率
专题:概率与统计
分析:列出小青蛙三次跳动后的所有情况,找出满足题意的可能数目,然后利用古典概型概率公式求解即可.
解答: 解:由题意可知小青蛙三次跳动后的所有情况有:
(3→1→3→1),(3→1→3→2),(3→1→3→4),(3→1→3→5);
(3→2→3→2),(3→2→3→1),(3→2→3→4),(3→2→3→5),
(3→4→3→4),(3→4→3→1),(3→4→3→2),(3→4→3→5),
(3→5→3→5),(3→5→3→1),(3→5→3→2),(3→5→3→4).
共有16种,
满足题意的有:(3→1→3→5),(3→2→3→5),(3→4→3→5)有3种.
由古典概型的概率的计算公式可得:
青蛙在第三次跳动后,首次进入5处的概率是:
3
16

故选:A.
点评:本题考查古典概型的概率公式的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
1
x
,g(x)=ax+b.
(1)若函数h(x)=f(x)-g(x)在(0,+∞)上单调递增,求实数a的取值范围;
(2)若直线g(x)=ax+b是函数f(x)=lnx-
1
x
图象的切线,求a+b的最小值;
(3)当b=0时,若f(x)与g(x)的图象有两个交点A(x1,y1),B(x2,y2),求证:x1x2>2e2
(取e为2.8,取ln2为0.7,取
2
为1.4)

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,A(-2,0),B(2,0)是两个定点,C(0,p).D(0,q)是两个动点,且pq=3.
(Ⅰ)求直线AC与BD交点的轨迹M的方程;
(Ⅱ)已知点P(1,t)是轨迹M上位于x轴上方的定点,E,F是轨迹M上的两个动点,直线PE与直线PF分别与x轴相交于G、H两点,且∠PGH=∠PHG,求直线EF的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个空间几何体的三个视图都是直角边长为1的等腰直角三角形,则这个空间几何体的外接球的表面积(  )
A、3B、3πC、9D、9π

查看答案和解析>>

科目:高中数学 来源: 题型:

(x2+
a2
x2
+2a)4展开式的常数项为280,则正数a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆x2+y2=16A(2,0),若P、Q是圆上两点,AP⊥AQ求PQ中点M的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

设cosx+cosy=
1
2
,sinx+siny=
1
4
,求cos(x-y)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1的参数方程为
x=2+2cosα
y=2sinα
(α为参数).在平面直角坐标系中,以坐
标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρcos(θ+
π
4
)=2
2

(Ⅰ)把C1的参数方程化为极坐标方程;
(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知8sinα+5cosβ=6,sin(α+β)=
47
80
,则8cosα+5sinβ=
 

查看答案和解析>>

同步练习册答案