精英家教网 > 高中数学 > 题目详情
在直角坐标系中,A(-2,0),B(2,0)是两个定点,C(0,p).D(0,q)是两个动点,且pq=3.
(Ⅰ)求直线AC与BD交点的轨迹M的方程;
(Ⅱ)已知点P(1,t)是轨迹M上位于x轴上方的定点,E,F是轨迹M上的两个动点,直线PE与直线PF分别与x轴相交于G、H两点,且∠PGH=∠PHG,求直线EF的斜率.
考点:直线与圆锥曲线的综合问题,轨迹方程
专题:圆锥曲线的定义、性质与方程
分析:(Ⅰ)由已知得直线AC的方程,得到p=
2y
x+2
,得直线BD的方程,得q=
-2y
x-2
,再由pq=3得直线AC与BD交点的轨迹M的方程;
(Ⅱ)把点P(1,t)代入M的轨迹方程得t=
3
2
.进一步得到P的坐标,设直线PE的斜率为k,写出直线PE方程,联立直线方程与M的轨迹,把E的坐标用k表示,同理把F的坐标用k表示,然后利用两点求斜率公式可得答案.
解答: 解:(Ⅰ)由A(-2,0),C(0,p),可得直线AC的方程为
y-0
p-0
=
x-(-2)
0-(-2)
,即p=
2y
x+2

由B(2,0),D(0,q),可得直线BD的方程为
y-0
q-0
=
x-2
0-2
,即q=
-2y
x-2

由pq=3,得
2y
x+2
-2y
x-2
=3
,整理得:
x2
4
+
y2
3
=1

∵pq≠0,∴C,D不与原点重合,即A(-2,0),B(2,0)不在轨迹M上,
∴直线AC与BD交点的轨迹M的方程为
x2
4
+
y2
3
=1
(y≠0);
(Ⅱ)∵点P(1,t)是轨迹M上位于x轴上方的定点,∴
1
4
+
t2
3
=1
,解得t=
3
2

∴P(1,
3
2
),
设直线PE的斜率为k,则直线PE方程为y=k(x-1)+
3
2
,代入
x2
4
+
y2
3
=1

(3+4k2)x2+4k(3-2k)x+4(
3
2
-k)2-12=0

设E(x1,y1),F(x2,y2),
∵P(1,
3
2
)在曲线M上,
x1=
4(
3
2
-k)2-12
3+4k2
y1=kx1+
3
2
-k

又∠PGH=∠PHG,得直线PF的斜率为-k,
同理可得x2=
4(
3
2
+k)2-12
3+4k2
y2=-kx2+
3
2
+k

∴直线EF的斜率为kEF=
y2-y1
x2-x1
=
-k(x1+x2)+2k
x2-x1

x1+x2=
8k2-6
4k2+3
x2-x1=
24k
4k2+3

kEF=
y2-y1
x2-x1
=
-k(x1+x2)+2k
x2-x1
=
-k(8k2-6)+24(4k2+3)
24k
=
1
2
点评:本题考查了曲线方程的求法,考查了直线与圆锥曲线的关系,直线与圆锥曲线的位置关系的应用,常采用直线与曲线联立,根据方程的根与系数的关系求解,但圆锥曲线的特点是计算量比较大,要求考生具备较强的运算推理的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△EFH是边长为1的正三角形,动点G在平面EFH内.若
EG
EF
<0,|
HG
|=1,
HG
EF
的取值范围为(  )
A、[-1,-
1
2
B、[-1,-
1
2
]
C、(-
3
2
,-
3
4
]
D、(-
3
2
,-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱柱ABCD-A1B1C1D1中,AA1⊥面ABCD,四边形ABCD为梯形,AD∥BC,且AD=3BC,过A1,C,D三点的平面记为α,BB1与α的交点为Q,则
B1Q
QB
为(  )
A、1
B、2
C、3
D、与
AD
AA1
的值有关

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)在R上有定义,对于任一给定的正数p,定义函数fp(x)=
f(x),f(x)≤p
p,f(x)>p
,则称函数fp(x)为f(x)的“p界函数”,若给定函数f(x)=x2-2x-2,p=1,则下列结论成立的是(  )
A、fp[f(0)]=f[fp(0)]
B、fp[f(1)]=f[fp(1)]
C、fp[f(2)]=fp[fp(2)]
D、f[f(-2)]=fp[fp(-2)]

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设不等式|2x-1|<1的解集为M,且a∈M,b∈M,试比较ab+1与a+b的大小;
(2)若a,b,c为正实数且满足a+2b+3c=6,求
a+1
+
2b+1
+
3c+1
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c∈R,且a+b+c=2,a2+2b2+3c2=4,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,满足a1=1,且an+1=(1+
1
n2+n
)an+
1
2n
(n≥1,且n∈N*),用数学归纳法证明:an≥2(n≥2,且n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,现有一迷失方向的小青蛙在3处,它每跳动一次可以等可能地进入相邻的任意一格(若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机会进入1,2,4,5处),则它在第三次跳动后,首次进入5处的概率是(  )
A、
3
16
B、
1
4
C、
1
6
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

调查表明,中年人的成就感与收入、学历、职业的满意度的指标有极强的相关性.现
将这三项的满意度指标分别记为x,y,z,并对它们进行量化:0表示不满意,1表示基本满意,2表示满意,再用综合指标w=x+y+z的值评定中年人的成就感等级:若w≥4,则成就感为一级;若2≤w≤3,则成就感为二级;若0≤w≤1,则成就感为三级.为了了解目前某群体中年人的成就感情况,研究人员随机采访了该群体的10名中年人,得到如下结果:
人员编号A1A2A3A4A5
(x,y,z)(1,1,2)(2,1,1)(2,2,2)(0,1,1)(1,2,1)
人员编号A6A7A8A9A10
(x,y,z)(1,2,2)(1,1,1)(1,2,2)(1,0,0)(1,1,1)
(Ⅰ)在这10名被采访者中任取两人,求这两人的职业满意度指标相同的概率;
(Ⅱ)从成就感等级是一级的被采访者中任取一人,其综合指标为a,从成就感等级不是一级的被采访者中任取一人,其综合指标为b,记随机变量X=a-b,求X的分布列及其数学期望.

查看答案和解析>>

同步练习册答案