精英家教网 > 高中数学 > 题目详情
4.已知x=1,x=3是函数f(x)=sin(ωx+φ)(ω>0)两个相邻的两个极值点,且f(x)在x=$\frac{3}{2}$处的导数f′($\frac{3}{2}$)<0,则f($\frac{1}{3}$)=$\frac{1}{2}$.

分析 f(x)的周期为2×(3-1)=4,解出ω,由f′($\frac{3}{2}$)<0得出f(1)=fmax(x)=1,利用正弦函数的性质解出φ,得到f(x)的解析式,再计算f($\frac{1}{3}$).

解答 解:∵x=1,x=3是函数f(x)=sin(ωx+φ)(ω>0)两个相邻的两个极值点,
∴f(x)的周期T=$\frac{2π}{ω}$=2×(3-1)=4,∴ω=$\frac{π}{2}$.
∵f′($\frac{3}{2}$)<0,
∴f(x)在[1,3]上是减函数,∴f(1)=sin($\frac{π}{2}$+φ)=1,
∴$\frac{π}{2}$+φ=$\frac{π}{2}+2kπ$,∴φ=2kπ.
∴f($\frac{1}{3}$)=sin($\frac{π}{6}+2kπ$)=sin$\frac{π}{6}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查了正弦函数的图象与性质,导数与函数单调性的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设平面向量$\overrightarrow a=\overrightarrow{OA}$,定义以x轴非负半轴为始边,逆时针方向为正方向,OA为终边的角称为向量$\overrightarrow a$的幅角.若r1是向量$\overrightarrow a$的模,r2是向量$\overrightarrow b$的模,$\overrightarrow a$的幅角是θ1,$\overrightarrow b$的幅角是θ2,定义$\overrightarrow a?\overrightarrow b$的结果仍是向量,它的模为r1r2,它的幅角为θ12.给出$\overrightarrow a=(\sqrt{3},1),\overrightarrow b=(1,1)$.试用$\overrightarrow a$、$\overrightarrow b$的坐标表示$\overrightarrow a?\overrightarrow b$的坐标,结果为$\overrightarrow a?\overrightarrow b$=($\sqrt{3}$-1,$\sqrt{3}$+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,异面直线AB,CD互相垂直,CF是它们的公垂线段,且F为AB的中点,作DE$\stackrel{∥}{=}$CF,连接AC、BD,G为BD的中点,AB=AC=AE=BE=2.
(1)在平面ABE内是否存在一点H,使得AC∥GH?若存在,求出点H所在的位置,若不存在,请说明理由;
(2)求G-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设x>0,y>0,且2x+8y=xy,求x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.不等式y≥2x-3表示的平面区域是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.判断下列各对直线的位置关系:
(1)l1:2x+3y-7=0;l2:5x-y-9=0;
(2)l1:2x-3y+5=0;l2:4x-6y+10=0;
(3)l1:2x-y+1=0;l2:4x-2y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知x是1,2,2,3,x,6,7,7,8这9个数的中位数,当x2-$\frac{1}{x}$-$\frac{5}{6}$取得最大值时,1,2,2,3,x,6,7,8这9个数的平均数为$\frac{14}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知在空间四边形ABCD中,AB=AC,DB=DC,点E为BC的中点,求证:BC⊥平面AED.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.不等式(x2-x-2)(1+x2)≤0的解集为[-1,2].

查看答案和解析>>

同步练习册答案