精英家教网 > 高中数学 > 题目详情
16.已知x是1,2,2,3,x,6,7,7,8这9个数的中位数,当x2-$\frac{1}{x}$-$\frac{5}{6}$取得最大值时,1,2,2,3,x,6,7,8这9个数的平均数为$\frac{14}{3}$.

分析 由已知得到x的范围以及由函数取最大值得到x值,然后求平均数.

解答 解:由x是1,2,2,3,x,6,7,7,8这9个数的中位数,得到3≤x≤6,又x2-$\frac{1}{x}$-$\frac{5}{6}$取得最大值时x=6,
所以1,2,2,3,6,6,7,7,8这9个数平均数为$\frac{1+2+2+3+6+6+7+7+8}{9}=\frac{14}{3}$;
故答案为:$\frac{14}{3}$.

点评 本题考查了样本数据的中位数以及平均数的求法;关键是明确x 的求值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为N,点N到抛物线C的准线的距离为$\frac{3}{4}$.
(1)求抛物线C的方程;
(2)当过点P(4,1)的动直线l与抛物线C相交于两不同点A,B时,在线段AB上取点Q,满足|$\overrightarrow{AP}$|•|$\overrightarrow{QB}$|=|$\overrightarrow{AQ}$|•|$\overrightarrow{PB}$|,证明:点Q总在某定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知复数z=$\frac{{a}^{2}+a-6}{a+3}$+(a2-3a-10)i(a∈R)满足zi>0或zi<0,求a的值(或范围).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知x=1,x=3是函数f(x)=sin(ωx+φ)(ω>0)两个相邻的两个极值点,且f(x)在x=$\frac{3}{2}$处的导数f′($\frac{3}{2}$)<0,则f($\frac{1}{3}$)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=2,($\overrightarrow{a}$+$\overrightarrow{b}$)$•\overrightarrow{b}$=6,则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.抛掷两枚骰子,当至少有一枚5点或一枚6点出现时,就说这次试验成功,求在30次试验中成功次数X的均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在△ABC中,AB=2,cosB=$\frac{1}{3}$,点D在线段BC上.
(1)若∠ADC=$\frac{3}{4}$π,求AD的长;
(2)若BD=2DC,△ACD的面积为$\frac{4}{3}$$\sqrt{2}$,求$\frac{sin∠BAD}{sin∠CAD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设a=tan$\frac{π}{7}$,b=$\frac{π}{7}$,c=sin$\frac{π}{7}$,则a,b,c的大小关系是(  )
A.c>b>aB.b>c>aC.a>c>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足$\frac{{b}_{1}}{{a}_{1}}+\frac{{b}_{2}}{{a}_{2}}+…+\frac{{b}_{n}}{{a}_{n}}$=1-$\frac{1}{{2}^{n}}$,n∈N*,求{bn}的前n项和Tn
(Ⅲ)求证:$\frac{1}{2}$≤Tn<3.

查看答案和解析>>

同步练习册答案