【题目】已知抛物线
的焦点为
,抛物线
上存在一点
到焦点
的距离等于
.
(1)求抛物线
的方程;
(2)过点
的直线
与抛物线
相交于
,
两点(
,
两点在
轴上方),点
关于
轴的对称点为
,且
,求△
的外接圆的方程.
【答案】(1)
(2)![]()
【解析】试题分析:(1)利用抛物线定义求抛物线
的方程;(2)设直线
的方程为
.代入
并整理得
,利用根与系数的关系转化条件
,解得
.即直线
的方程为
.然后根据外心的几何性质,确定圆心坐标即可.
试题解析:
(1)抛物线的准线方程为
,
所以点
到焦点的距离为
.
解得
.
所以抛物线
的方程为
.
(2)解法:设直线
的方程为
.
将
代入
并整理得
,
由
,解得
.
设
,
,
,
则
,
,
因为
,
因为
,所以
.
即
,又
,解得
.
所以直线
的方程为
.
设
的中点为
,
则
,
,
所以直线
的中垂线方程为
.
因为
的中垂线方程为
,
所以△
的外接圆圆心坐标为
.
因为圆心
到直线
的距离为
,且
,
所以圆的半径
.
所以△
的外接圆的方程为
.
科目:高中数学 来源: 题型:
【题目】一盒中装有除颜色外其余均相同的12个小球,从中随机取出1个球,取出红球的概率为
,取出黑球的概率为
,取出白球的概率为
,取出绿球的概率为
.求:
(1)取出的1个球是红球或黑球的概率;
(2)取出的1个球是红球或黑球或白球的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是函数
在区间
上的图象,为了得到这个函数的图象,只需将y=sinx的图象
![]()
A. 向左平移
个长度单位,再把所得各点的横坐标变为原来的
,纵坐标不变
B. 向左平移至
个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变
C. 向左平移
个长度单位,再把所得各点的横坐标变为原来的
,纵坐标不变
D. 向左平移
个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】读下列各题所给的程序,依据程序画出程序框图,并说明其功能:
(1)INPUT “x=”;x
IF x>1 OR x<-1 THEN
y=1
ELSE y=0
END IF
PRINE y
END
(2)INPUT “输入三个正数a,b,c=”;a,b,c
IF a+b>c AND a+c>b AND b+c>a THEN
p=(a+b+c)/2
S=SQR(p*(p-a)*(p-b)*(p-c))
PRINT “三角形的面积S=”S
ELSE
PRINT “构不成三角形”
END IF
END
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角坐标系
中,椭圆
:
的上焦点为
,椭圆
的离心率为
,且过点
.
(1)求椭圆
的方程;
(2)设过椭圆
的上顶点
的直线
与椭圆
交于点
(
不在
轴上),垂直于
的直线与
交于点
,与
轴交于点
,若
,且
,求直线
的方程.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北偏东30°,俯角为30°的B处,到11时10分又测得该船在岛北偏西60°,俯角为60°的C处.
(1)求船的航行速度是每小时多少千米?
(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
,
.
(Ⅰ)当
时,
的零点为______;(将结果直接填写在横线上)
(Ⅱ)当
时,如果存在
,使得
,试求
的取值范围;
(Ⅲ)如果对于任意
,都有
成立,试求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn,满足Sn=2an-1.(n∈N*)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=
an,求数列{bn}的前n项和Tn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com