精英家教网 > 高中数学 > 题目详情
17.已知函数$f(x)=alnx-\frac{1}{2}{x^2}+x$,$g(x)=\frac{1}{2}{x^2}-2x+1$.
(Ⅰ)当a=2时,求f(x)在x∈[1,e2]时的最值(参考数据:e2≈7.4);
(Ⅱ)若?x∈(0,+∞),有f(x)+g(x)≤0恒成立,求实数a的值.

分析 (Ⅰ)当a=2时,求出$f'(x)=\frac{2}{x}-x+1=\frac{-(x-2)(x+1)}{x}$,x>0,由此利用导数性质能求出f(x)在x∈[1,e2]时的最值.
(Ⅱ)令h(x)=f(x)+g(x)=alnx-x+1,则$h'(x)=\frac{a}{x}-1=\frac{a-x}{x}$,当a≤0时,不满足条件;当a>0时,h(x)max=h(a)=alna-a+1≤0,令g(a)=alna-a+1,(a>0),则g'(a)=lna,g(a)min=g(1)=0,由此能求出a.

解答 解:(Ⅰ)∵当a=2时,$f(x)=2lnx-\frac{1}{2}{x^2}+x$,
∴$f'(x)=\frac{2}{x}-x+1=\frac{-(x-2)(x+1)}{x}$,x>0,
当1<x<2时,f′(x)>0,得-1<x<2,当2<x<e2时,f′(x)<0,
∴函数f(x)在[1,2]为增函数,在[2,e2]为减函数.
∴f(x)max=f(2)=2ln2.
$f{(x)_{min}}=min\{f(1),f({e^2})\}=min\{\frac{1}{2},4+{e^2}-\frac{1}{2}{e^4}\}=4+{e^2}-\frac{1}{2}{e^4}$.
(Ⅱ)令h(x)=f(x)+g(x)=alnx-x+1,则$h'(x)=\frac{a}{x}-1=\frac{a-x}{x}$,
(1)当a≤0时,h(x)在(0,+∞)上为减函数,而h(1)=0,
∴h(x)≤0在区间x∈(0,+∞)上不可能恒成立,因此a≤0不满足条件.
(2)当a>0时,h(x)在(0,a)上递增,在(a,+∞)上递减,
∴h(x)max=h(a)=alna-a+1.
∵h(x)≤0在x∈(0,+∞)恒成立,∴h(x)max≤0.即alna-a+1≤0.
令g(a)=alna-a+1,(a>0),则g'(a)=lna,
∴g(a)在(0,1)上递减,在(1,+∞)上递增,
∴g(a)min=g(1)=0,故a=1.

点评 本题考查函数在闭区间上的最值的求法,考查满足条件的实数值的求法,考查导数性质、构造法、函数的单调区间、极值、最值等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,考查创新意识、应用意识,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,F是抛物线C:y2=2px(p>0)的焦点,M是抛物线C上的任意一点,当M位于第一象限内时,△OFM外接圆的圆心到抛物线C准线的距离为$\frac{3}{2}$.
(1)求抛物线C的方程;
(2)过K(-1,0)的直线l交抛物线C于A,B两点,且$\overrightarrow{KA}=λ\overrightarrow{KB}(λ∈[2,3])$,点G为x轴上一点,且|GA|=|GB|,求点G的横坐标x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式x2-3x+2≤0成立的充要条件是1≤x≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一辆汽车在笔直的公路上向前变速行驶,设汽车在时刻t的速度为v(t)=-t2+4,(t的单位:h,v的单位:km/h)则这辆车行驶的路程是$\frac{16}{3}$km.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了完成对某城市的工薪阶层是否赞成调整个人所得税税率的调查,随机抽取了60人,作出了他们的月收入频率分布直方图(如图),同时得到了他们月收入情况与赞成人数统计表(如表):
月收入(百元)赞成人数
[15,25)8
[25,35)7
[35,45)10
[45,55)6
[55,65)2
[65,75)2
(1)试根据频率分布直方图估计这60人的平均月收入;
(2)若从月收入(单位:百元)在[65,75)的被调查者中随机选取2人进行追踪调查,求2人都不赞成的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)、g(x)都是定义在R上的函数,g(x)≠0,f'(x)g(x)<f(x)g'(x),f(x)=axg(x),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$,在有穷数列$\left\{{\frac{f(n)}{g(n)}}\right\}$(n=1,2,…,10)中,任意取前k项相加,则前k项和不小于$\frac{63}{64}$的k的取值范围是(  )
A.[6,10]且k∈N*B.(6,10]且k∈N*C.[5,10]且k∈N*D.[1,6]且k∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若f(1+$\sqrt{x}$)=x,则函数f(x)的解析式为f(x)=f(x)=(x-1)2,x≥1 .

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知单位圆O有一定点A,在圆O上随机取一点B,则使$|{\overrightarrow{OA}-\overrightarrow{OB}}|≤1$成立的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(x2-ax+b)ex(a,b为常数,e是自然对数的底).
(1)当a=-1,b=1时,求f(x)的单调区间;
(2)当b=a+1时,函数f(x)有两个极值点x1,x2(x1<x2).
①求实数a的取值范围;
②若a>0且mx1e${\;}^{{x}_{2}}$-f(x2)>0恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案