精英家教网 > 高中数学 > 题目详情
3.在△ABC中,角A、B、C所对的边分别为a、b、c,且$\frac{\sqrt{3}a}{cosA}$=$\frac{b}{sinB}$.
(Ⅰ)求角A的值;
(Ⅱ)若B=$\frac{π}{6}$,且△ABC的面积为4$\sqrt{3}$,求BC边上的中线AM的大小.

分析 (Ⅰ)由正弦定理,同角三角函数基本关系式可求tanA,结合范围A∈(0,π),可得A的值.
(Ⅱ)由题意设AC=BC=2a,利用三角形面积公式可求a的值,在△ACM中,由余弦定理即可求得AM的值.

解答 解:(Ⅰ)由正弦定理:$\frac{a}{sinA}=\frac{b}{sinB}$,又由已知$\frac{\sqrt{3}a}{cosA}=\frac{b}{sinB}$,
所以$\frac{\sqrt{3}a}{cosA}=\frac{a}{sinA}$,tanA=$\frac{\sqrt{3}}{3}$,
因为A∈(0,π),所以A=$\frac{π}{6}$.
(Ⅱ)由已知B=$\frac{π}{6}$,则△ABC是等腰三角形,∠C=$\frac{2π}{3}$,设AC=BC=2a,
S△ABC=$\frac{1}{2}AC•BC•sin∠ACB$=$\frac{1}{2}•(2a)^{2}sin\frac{2π}{3}$=$\sqrt{3}$a2
由已知△ABC的面积为4$\sqrt{3}$,得a2=4,a=2,
△ACM中,由余弦定理,AM2=CA2+CM2-2CA•CM•cos$\frac{2π}{3}$
=42+22-2×2×4×(-$\frac{1}{2}$)=28,
所以AM=2$\sqrt{7}$.

点评 本题主要考查了正弦定理,同角三角函数基本关系式,三角形面积公式,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设集合$A=\left\{{x|{{log}_2}({{x^2}-x-4})>1}\right\}$,$B=\left\{{x|\sqrt{x-2}<2}\right\}$,则A∩B=(  )
A.(3,6)B.(-∞,-2)∪(3,6)C.(3,4)D.(-∞,-2)∪(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知△ABC的外接圆半径为R,角A,B,C所对的边分别为a,b,c,若asinBcosC+$\frac{3}{2}$csinC=$\frac{2}{R}$,则△ABC面积的最大值为(  )
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知点P(3cosθ,sinθ)在直线l:x+3y=1,则sin2θ=-$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(x)=\left\{\begin{array}{l}1,x>0\\-1,x<0\end{array}\right.$,设$g(x)=\frac{f(x)}{x^2}$,则g(x)是(  )
A.奇函数,在(-∞,0)上递增,在(0,+∞)上递增
B.奇函数,在(-∞,0)上递减,在(0,+∞)上递减
C.偶函数,在(-∞,0)上递增,在(0,+∞)上递增
D.偶函数,在(-∞,0)上递减,在(0,+∞)上递减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|0≤x≤5},B={x∈N*|x-1≤2},则A∩B=(  )
A.{x|0≤x≤3}B.{1,2,3}C.{0,1,2,3}D.{x|1≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\frac{1}{sinφ}$+$\frac{1}{cosφ}$=2$\sqrt{2}$,若φ∈(0,$\frac{π}{2}$),则${∫}_{-1}^{tanφ}$(x2-2x)dx=(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.等差数列3,7,11…的公差是4,通项公式为4n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,在三棱柱ABC-A1B1C1中,已知AC⊥平面BCC1B1,AC=BC=1,BB1=2,∠B1BC=60°.
(1)证明:B1C⊥AB;
(2)已知点E在棱BB1上,二面角A-EC1-C为45°,求$\frac{BE}{{B{B_1}}}$的值.

查看答案和解析>>

同步练习册答案