精英家教网 > 高中数学 > 题目详情
18.已知函数$f(x)=\left\{\begin{array}{l}1,x>0\\-1,x<0\end{array}\right.$,设$g(x)=\frac{f(x)}{x^2}$,则g(x)是(  )
A.奇函数,在(-∞,0)上递增,在(0,+∞)上递增
B.奇函数,在(-∞,0)上递减,在(0,+∞)上递减
C.偶函数,在(-∞,0)上递增,在(0,+∞)上递增
D.偶函数,在(-∞,0)上递减,在(0,+∞)上递减

分析 根据题意,写出函数g(x)的解析式,设x>0,则-x<0,分析可得g(-x)=-g(x),可得g(x)为奇函数;由x>0时g(x)的解析式,对其求导可得g′(x)=-2•$\frac{1}{{x}^{3}}$=$\frac{-2}{{x}^{3}}$<0,可得函数g(x)在区间(0,+∞)上递减,结合单调性可得其在(-∞,0)上也递减,综合可得答案.

解答 解:根据题意,$g(x)=\frac{f(x)}{x^2}$=$\left\{\begin{array}{l}{\frac{1}{{x}^{2}},x>0}\\{-\frac{1}{{x}^{2}},x<0}\end{array}\right.$,
设x>0,则-x<0,g(-x)=-$\frac{1}{(-x)^{2}}$=-$\frac{1}{{x}^{2}}$=-g(x),故g(x)为奇函数;
当x>0时,g(x)=$\frac{1}{{x}^{2}}$=x-2
g′(x)=-2•$\frac{1}{{x}^{3}}$=$\frac{-2}{{x}^{3}}$<0,
即g(x)在区间(0,+∞)上递减,
又由函数g(x)为奇函数,则在(-∞,0)上也递减,
故选:B.

点评 本题考查函数的奇偶性单调性的判定,涉及分段函数的应用,关键是写出g(x)的解析式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知关于x的方程x3+ax2+bx+c=0的三个实根分别为一个椭圆,一个抛物线,一个双曲线的离心率,则$\frac{b}{a}$的取值范围(  )
A.(-1,0)B.$(-1,-\frac{1}{2})$C.$(-2,-\frac{1}{2})$D.(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=Msin(ωx+φ)(M>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,其中A(2,3)(点A为图象的一个最高点),B(-$\frac{5}{2}$,0),则函数f(x)=3sin($\frac{π}{3}$x-$\frac{π}{6}$)..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.记不等式$\left\{\begin{array}{l}x-y+1≥0\\ 3x-y-3≤0\\ x+y-1≥0\end{array}\right.$所表示的平面区域为D,若对任意(x0,y0)∈D,不等式x0-2y0+c≤0恒成立,则c的取值范围是(  )
A.(-∞,4]B.(-∞,2]C.[-1,4]D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过抛物线y2=4x焦点F的直线交抛物线于A、B两点,交其准线于点C,且A、C位于x轴同侧,若|AC|=2|AF|,则|BF|等于(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A、B、C所对的边分别为a、b、c,且$\frac{\sqrt{3}a}{cosA}$=$\frac{b}{sinB}$.
(Ⅰ)求角A的值;
(Ⅱ)若B=$\frac{π}{6}$,且△ABC的面积为4$\sqrt{3}$,求BC边上的中线AM的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若从一副52张的扑克牌中随机抽取2张,则在放回抽取的情形下,两张牌都是K的概率为$\frac{1}{16}$(结果用最简分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(0,$\sqrt{2}$),E的离心率e=$\frac{\sqrt{6}}{3}$
(Ⅰ)求E的标准方程;
(Ⅱ)F1(-c,0)、F2(c,0)分别是椭圆E的左、右焦点,直线AB过F1交E于点A、B,直线CD过F2交E于点C、D,$\overrightarrow{AB}$=$\overrightarrow{DC}$,求四边形ABCD面积S取得的最大值时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2cost\\ y=sint\end{array}\right.$(t为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ.
(Ⅰ)求曲线C1和C2的直角坐标方程,并分别指出其曲线类型;
(Ⅱ)试判断:曲线C1和C2是否有公共点?如果有,说明公共点的个数;如果没有,请说明理由;
(Ⅲ)设A(a,b)是曲线C1上任意一点,请直接写出a+2b的取值范围.

查看答案和解析>>

同步练习册答案