精英家教网 > 高中数学 > 题目详情
11.已知点P(3cosθ,sinθ)在直线l:x+3y=1,则sin2θ=-$\frac{8}{9}$.

分析 由题意可得3cosθ+3sinθ=1,两边平方,可得sin2θ=2sinθcosθ 的值.

解答 解:∵点P(3cosθ,sinθ)在直线l:x+3y=1,∴3cosθ+3sinθ=1,
两边平方,可得sin2θ=2sinθcosθ=-$\frac{8}{9}$,
故答案为:-$\frac{8}{9}$.

点评 本题主要考查二倍角的正弦公示的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.数列{an}的前n项和为Sn,Sn=(2n-1)an,且a1=1.
(1)求数列{an}的通项公式;
(2)若bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知△ABC的外接圆圆心为O,且∠A=60°,若$\overrightarrow{AO}=α\overrightarrow{AB}+β\overrightarrow{AC}(α,β∈R)$,则α+β的最大值为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy内,动点M(x,y)与两定点(-2,0),(2,0)连线的斜率之积为-$\frac{1}{4}$.
(1)求动点M的轨迹C的方程;
(2)设点A(x1,y1),B(x2,y2)是轨迹C上相异的两点.
(Ⅰ)过点A,B分别作抛物线y2=4$\sqrt{3}$x的切线l1,l2,l1与l2两条切线相交于点$N({-\sqrt{3},t})$,证明:$\overrightarrow{NA}•\overrightarrow{NB}$=0;
(Ⅱ)若直线OA与直线OB的斜率之积为-$\frac{1}{4}$,证明:S△AOB为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.记不等式$\left\{\begin{array}{l}x-y+1≥0\\ 3x-y-3≤0\\ x+y-1≥0\end{array}\right.$所表示的平面区域为D,若对任意(x0,y0)∈D,不等式x0-2y0+c≤0恒成立,则c的取值范围是(  )
A.(-∞,4]B.(-∞,2]C.[-1,4]D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2+2cost\\ y=2sint\end{array}\right.(t$为参数),在以坐标原点O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:θ=$\frac{π}{6}$(ρ>0),A(2,0).
(1)把C1的参数方程化为极坐标方程;
(2)设C3分别交C1,C2于点P,Q,求△APQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A、B、C所对的边分别为a、b、c,且$\frac{\sqrt{3}a}{cosA}$=$\frac{b}{sinB}$.
(Ⅰ)求角A的值;
(Ⅱ)若B=$\frac{π}{6}$,且△ABC的面积为4$\sqrt{3}$,求BC边上的中线AM的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知命题P:?x∈R,x2+2x-1≥0,则¬P是(  )
A.?x0∈R,x02+2x0-1<0B.?x∈R,x2+2x-1≤0
C.?x0∈R,x02+2x0-1≥0D.?x∈R,x2+2x-1<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,角A,B,C的对边分别是a,b,c,已知$b=4\sqrt{5},c=5$,且B=2C,点D为边BC上的一点,且CD=3,则△ADC的面积为6.

查看答案和解析>>

同步练习册答案