精英家教网 > 高中数学 > 题目详情
2.已知△ABC的外接圆圆心为O,且∠A=60°,若$\overrightarrow{AO}=α\overrightarrow{AB}+β\overrightarrow{AC}(α,β∈R)$,则α+β的最大值为$\frac{2}{3}$.

分析 延长AO交BC于D,设$\overrightarrow{AD}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,(m>0,n>0),由平面向量基本定理和向量共线定理可得m+n=α$\frac{|AD|}{|AO|}$+β$\frac{|AD|}{|AO|}$,由B,C,D三点共线,可得α+β=1,进而得到α+β=$\frac{1}{1+\frac{|OD|}{|OA|}}$,求出|OD|的最小值,可过O作OM⊥BC,求得|OM|即可得到所求最大值.

解答 解:延长AO交BC于D,设$\overrightarrow{AD}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,(m>0,n>0),
又$\overrightarrow{AO}=α\overrightarrow{AB}+β\overrightarrow{AC}(α,β∈R)$,
易得$\frac{m}{α}$=$\frac{n}{β}$=$\frac{|AD|}{|AO|}$即有m=α$\frac{|AD|}{|AO|}$,n=β$\frac{|AD|}{|AO|}$,
则m+n=α$\frac{|AD|}{|AO|}$+β$\frac{|AD|}{|AO|}$,
由B,C,D三点共线,可得m+n=1,
即有α+β=$\frac{|AO|}{|AD|}$=$\frac{|AO|}{|AO|+|OD|}$=$\frac{1}{1+\frac{|OD|}{|OA|}}$,
由于|AO|=r是定值,只需|OD|最小,
过O作OM⊥BC,垂足为M,则OD≥OM,
即有∠BOM=∠BAC,
∵∠BAC=60°,
∴cos∠BAC=$\frac{1}{2}$=$\frac{|OM|}{|OB|}$,则|OM|=$\frac{1}{2}$r.
则α+β≤$\frac{1}{1+\frac{1}{2}}$=$\frac{2}{3}$.
即有α+β的最大值为$\frac{2}{3}$.
故答案为:$\frac{2}{3}$

点评 本题考查平面向量的基本定理的运用,主要考查向量共线定理的运用和同角的基本关系式的运用,考查运算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.各项都是正数的数列{an}满足an+1=2an,且a3•a11=16,则a5=(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合$A=\left\{{x|{{log}_2}({{x^2}-x-4})>1}\right\}$,$B=\left\{{x|\sqrt{x-2}<2}\right\}$,则A∩B=(  )
A.(3,6)B.(-∞,-2)∪(3,6)C.(3,4)D.(-∞,-2)∪(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点P是抛物线y2=4x上的一点,抛物线的焦点为F,若|PF|=5,直线PF的斜率为k,则|k|=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.将直角三角形ABC沿斜边上的高AD折成120°的二面角,已知直角边AB=4$\sqrt{3}$,AC=4$\sqrt{6}$,那么下面说法正确的是(  )
A.平面ABC⊥平面ACD
B.四面体D-ABC的体积是$\frac{16}{3}\sqrt{6}$
C.二面角A-BC-D的正切值是$\frac{{\sqrt{42}}}{5}$
D.BC与平面ACD所成角的正弦值是$\frac{{\sqrt{21}}}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.一鲜花店根据一个月(30天)某种鲜花的日销售量与销售天数统计如下,将日销售量落入各组区间频率视为概率.
日销售量(枝)0~5050~100100~150150~200200~250
销售天数3天5天13天6天3天
(1)试求这30天中日销售量低于100枝的概率;
(2)若此花店在日销售量低于100枝的时候选择2天作促销活动,求这2天恰好是在日销售量低于50枝时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知△ABC的外接圆半径为R,角A,B,C所对的边分别为a,b,c,若asinBcosC+$\frac{3}{2}$csinC=$\frac{2}{R}$,则△ABC面积的最大值为(  )
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{12}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知点P(3cosθ,sinθ)在直线l:x+3y=1,则sin2θ=-$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.等差数列3,7,11…的公差是4,通项公式为4n-1.

查看答案和解析>>

同步练习册答案