精英家教网 > 高中数学 > 题目详情
8.下列函数中,既是奇函数又存在零点的是(  )
A.y=sinxB.y=lnxC.y=x2D.y=$\frac{1}{x}$

分析 根据题意,依次分析选项中函数是否符合题意要求,综合可得答案.

解答 解:根据题意,依次分析选项:
对于A、函数y=sinx,有f(-x)=sin(-x)=-sinx=-f(x),为奇函数,且当x=kπ,k为整数时,y=sinx=0,y=sinx存在零点,符合题意;
对于B、y=lnx,为对数函数,是非奇非偶函数,不符合题意;
对于C、y=x2,为二次函数,是偶函数,不符合题意;
对于D、y=$\frac{1}{x}$,为反比例函数,是奇函数,但不存在零点,不符合题意;
故选:A.

点评 本题考查函数奇偶性的判定,涉及函数零点的定义,需要掌握常见函数的图象的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=$\sqrt{2}$a,点E在PD上,且PE:ED=2:1;
(1)证明:PA⊥平面ABCD;
(2)在棱PB上是否存在一点F,使三棱锥F-ABC是正三棱锥?证明你的结论;
(3)求以AC为棱,EAC与DAC为面的二面角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.数列{an}中,${a_{n+1}}+{(-1)^n}{a_n}=2n-1$,则数列{an}前16项和等于(  )
A.130B.132C.134D.136

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为(  )
A.$4+\frac{2π}{3}$B.$4+\frac{{\sqrt{2}π}}{6}$C.$12+\frac{2π}{3}$D.$12+\frac{{\sqrt{2}π}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\frac{lnx+k}{e^x}$(其中k∈R,e是自然对数的底数),f'(x)为f(x)导函数.
(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)对任意x>1,xexf'(x)+(2k-1)x<1+k恒成立,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.(文科)sin42°cos18°-cos138°cos72°=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn-1=2Sn+1,其中n≥2,n∈N*.
(1)求证:数列{an}为等差数列,并求其通项公式;
(2)设bn=an•2-n,Tn为数列{bn}的前n项和.
①求Tn的表达式,并判断Tn的单调性;
②求使Tn>2的n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点P为函数f(x)=lnx的图象上任意一点,点Q为圆${[{x-(e+\frac{1}{e})}]^2}+{y^2}=\frac{1}{4}$上任意一点,则线段PQ长度的最小值为(  )
A.$\frac{{e-\sqrt{{e^2}-1}}}{e}$B.$\frac{{2\sqrt{{e^2}+1}-e}}{2e}$C.$\frac{{\sqrt{{e^2}+1}-e}}{2e}$D.$e+\frac{1}{e}-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z=a+$\sqrt{3}$i(a∈R)在复平面内对应的点位于第二象限,且|z|=2,则复数z等于(  )
A.-1+$\sqrt{3}$iB.1+$\sqrt{3}$iC.-1+$\sqrt{3}$i或1+$\sqrt{3}$iD.-2+$\sqrt{3}$i

查看答案和解析>>

同步练习册答案