16£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßC1£º$\left\{\begin{array}{l}{x=cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔÆ½ÃæÖ±½Ç×ø±êϵxOyµÄÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣬȡÏàͬµÄµ¥Î»³¤¶È½¨Á¢¼«×ø±êϵ£¬ÒÑÖªÖ±Ïßl£º¦Ñ£¨2cos¦È-sin¦È£©=6£®
£¨1£©ÇóC1¼°Ö±ÏßlµÄÖ±½Ç×ø±ê·½³Ì
£¨2£©ÔÚÇúÏßC1ÉÏÇóÒ»µãP£¬Ê¹µãPµ½Ö±ÏßlµÄ¾àÀë×îС£¬²¢Çó³ö´Ë×î´óÖµ£®

·ÖÎö £¨1£©ÓÉ$\left\{\begin{array}{l}x=cos¦È\\ y=sin¦È\end{array}\right.$µÃx2+y2=1£¬ÀûÓü«×ø±êÓëÖ±½Ç×ø±ê»¥»¯·½·¨µÃµ½Ö±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÀûÓòÎÊý£¬Çó³öÔ²Ðĵ½Ö±ÏߵľàÀ룬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©ÓÉ$\left\{\begin{array}{l}x=cos¦È\\ y=sin¦È\end{array}\right.$µÃx2+y2=1£¬
Óɦѣ¨2cos¦È-sin¦È£©=6£¬¡à2¦Ñcos¦È+¦Ñsin¦È=6£¬
Ö±ÏßµÄÖ±½Ç×ø±ê·½³ÌΪ£º2x+y-6=0£®
£¨2£©Ô²ÐÄΪ£¨0£¬0£©£¬r=1£¬Ô²Ðĵ½Ö±ÏߵľàÀë$d=\frac{{|{2cos¦È+sin¦È-6}|}}{{\sqrt{{2^2}+{1^2}}}}=\frac{{|{\sqrt{5}sin£¨¦È+¦Õ£©-6}|}}{{\sqrt{5}}}£¬sin¦Õ=\frac{{2\sqrt{5}}}{5}£¬cos¦Õ=\frac{{\sqrt{5}}}{5}$£¬
µ±$¦È+¦Õ=\frac{¦Ð}{2}$ʱPµ½Ö±ÏߵľàÀë×î¶Ì£¬´Ëʱ$x=cos¦È=sin¦Õ=\frac{{2\sqrt{5}}}{5}£¬y=sin¦È=co¦Õ=\frac{{\sqrt{5}}}{5}$£¬
ËùÒÔµãP×ø±êÊÇ$£¨\frac{{2\sqrt{5}}}{5}£¬\frac{{\sqrt{5}}}{5}£©$£¬
Ô²ÉϵĵãPµ½Ö±ÏßµÄ×î¶Ì¾àÀëΪ$\frac{{6\sqrt{5}}}{5}-1$£¬×î´ó¾àÀëΪ$\frac{{6\sqrt{5}}}{5}+1$£®

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²éµãµ½Ö±ÏߵľàÀ빫ʽ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®f£ºx¡úx2ÊǼ¯ºÏAµ½¼¯ºÏBµÄÓ³É䣬Èç¹ûB={1£¬2}£¬ÄÇôA¡ÉBÖ»¿ÉÄÜÊÇ£¨¡¡¡¡£©
A£®{1£¬2}B£®{1}»ò∅C£®$\left\{{1£¬\sqrt{2}£¬2}\right\}$D£®{1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®º¯Êýf£¨x£©=x3-3|x|+1£¨x¡Ü1£©µÄÁãµãËùÔÚÇø¼äΪ£¨¡¡¡¡£©
A£®$£¨-\frac{1}{3}£¬-\frac{1}{4}£©$ºÍ$£¨\frac{1}{2}£¬1£©$B£®$£¨-\frac{1}{2}£¬-\frac{1}{3}£©$ºÍ$£¨\frac{1}{3}£¬\frac{1}{2}£©$C£®$£¨-\frac{1}{2}£¬-\frac{1}{3}£©$ºÍ$£¨\frac{1}{2}£¬1£©$D£®$£¨-\frac{1}{3}£¬-\frac{1}{4}£©$ºÍ$£¨\frac{1}{3}£¬\frac{1}{2}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®º¯Êýy=$\sqrt{4-{x}^{2}}$+lg£¨x+1£©µÄÁ¬ÐøÇø¼äΪ£¨-1£¬2]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Éè[x]±í²»³¬¹ýʵÊýxµÄ×î´óÕûÊý£¬ÓÖg£¨x£©=$\frac{{a}^{x}}{{a}^{x}+1}$£¨a£¾0£¬a¡Ù1£©£¬ÄÇôº¯Êýf£¨x£©=[g£¨x£©-$\frac{1}{2}$]+[g£¨-x£©-$\frac{1}{2}$]µÄÖµÓòÊÇ{0£¬-1}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®º¯Êýf£¨x£©=ax3+bx2-c£¬µ±x=1ʱ£¬f£¨x£©È¡µÃµÄ¼«Öµ-3-c£®  
 £¨1£©Çóa£¬bµÄÖµ£»
£¨2£©Çóº¯Êýf£¨x£©µÄ¼«Öµ£»
£¨3£©Èô¶ÔÓÚÈÎÒâx£¾0£¬²»µÈʽf£¨x£©¡Ý-2c2ºã³ÉÁ¢£¬ÇócµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=x3-3x2+3x+1£®ÅжÏf£¨x£©µÄµ¥µ÷ÐÔ£¬²¢ÇóÆäµ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®µÈ²îÊýÁÐ{an}ÖУ¬¹«²îd=2£¬a1+a3+a5+¡­+a29=18£¬Ôòa2+a4+a6+¡­+a30=£¨¡¡¡¡£©
A£®20B£®36C£®48D£®52

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÒÑÖªËÄÀâ×¶P-ABCDÖУ¬PD¡Íµ×ÃæABCD£¬ÇÒµ×ÃæABCDÊDZ߳¤Îª2µÄÕý·½ÐΣ¬M¡¢N·Ö±ðΪPB¡¢PCµÄÖе㣮
£¨1£©Ö¤Ã÷£ºMN¡ÎÆ½ÃæPAD£»
£¨2£©ÈôPBÓëÆ½ÃæABCDËù³ÉµÄ½ÇΪ45¡ã£¬ÇóÈýÀâ×¶C-BDNµÄÌå»ýV£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸