精英家教网 > 高中数学 > 题目详情
13.复数z=$\frac{2+i}{1-2i}$的虚部为(  )
A.-$\frac{5}{3}$B.-$\frac{5}{3}$iC.1D.i

分析 利用复数的除法的运算法则化简求解得到a+bi即可.

解答 解:复数z=$\frac{2+i}{1-2i}$=$\frac{(2+i)(1+2i)}{(1-2i)(1+2i)}$=$\frac{2+5i-2}{5}$=i.
复数的虚部为:1.
故选:C.

点评 本题考查复数的代数形式混合运算,复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.设关于x,y的不等式组$\left\{\begin{array}{l}{2x-y+1≥0}\\{x-m≤0}\\{y+m≥0}{\;}\end{array}\right.$表示的平面区域内存在点P(x0,y0)满足$\frac{|3{x}_{0}-4{y}_{0}-12|}{5}$=1,则实数m的取值范围是(  )
A.[1,+∞)B.$[\frac{17}{7},+∞)$C.$[1,\frac{17}{7}]$D.$(-∞,\frac{17}{7}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等差数列{an}中,a5+a6=10,则其前10项和S10的值是(  )
A.10B.50C.60D.100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线C的左右焦点为F1,F2,P双曲线右支上任意一点,若以F1为圆心,以$\frac{1}{2}$|F1F2|为半径的圆与以P为圆心,|PF2|为半径的圆相切,则C的离心率为(  )
A.$\sqrt{2}$B.2C.4D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$=(sinα,$\frac{3}{4}$),$\overrightarrow{b}$=(cosα,$\frac{\sqrt{3}}{4}$),α∈(0,π),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则α=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow a$=(1,x),$\overrightarrow b$=(x-3,2),且$\overrightarrow a$⊥$\overrightarrow b$.
(Ⅰ)求x的值;
(Ⅱ)试确定实数k的值,使k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-2$\overrightarrow{b}$平行.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)是定义在R上的奇函数,若f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x∈[0,1)}\\{\frac{1}{2}{x}^{2}-3x+\frac{7}{2},x∈[1,+∞)}\end{array}\right.$,则关于x的方程f(x)+a=0(0<a<1)的所有根之和为(  )
A.1-($\frac{1}{2}$)aB.($\frac{1}{2}$)a-1C.1-2aD.2a-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图是一个算法的程序框图,该算法所输出的结果是(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.点P(sin2θ,sinθ)位于第三象限,那么θ是第(  )象限角.
A.B.C.D.

查看答案和解析>>

同步练习册答案