精英家教网 > 高中数学 > 题目详情
已知函数f(x)=Asin(ωx+φ)(其中x∈R,A>0,ω>0,0<φ<
π
2
)的部分图象如图.
(1)求函数f(x)的解析式;
(2)求g(x)=f(x+
π
12
)的单调递减区间.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:三角函数的图像与性质
分析:(1)由图分析出函数的周期可得ω值,进而结合点(
12
,0)
在函数的图象上和点(0,1)在函数的图象上,可得φ值及A值,进而求出函数f(x)的解析式;
(2)求g(x)=f(x+
π
12
)的解析式,结合正弦函数的图象和性质,可得函数的单调递减区间.
解答: 解:由图知,周期T=2(
11π
12
-
12
)=π

ω=
T
=2,…(2分)
∵点(
12
,0)
在函数的图象上,
Asin(2×
12
+φ)=0
,即sin(
6
+φ)=0

0<φ<
π
2

6
+φ=π
,即φ=
π
6
.…(4分)
又点(0,1)在函数的图象上,
Asin
π
6
=1,A=2
,…(6分)
故函数的解析式为f(x)=2sin(2x+
π
6
)
.…(8分)
(2)g(x)=f(x+
π
12
)
=2sin(2x+
π
3
)
,…(9分)
2kπ+
π
2
≤2x+
π
3
≤2kπ+
2
,k∈Z

kπ+
π
12
≤x≤kπ+
12
,k∈Z
,…(11分)
∴函数g(x)的单调递减区间是[kπ+
π
12
,kπ+
12
],k∈Z
.…(12分)
点评:本题考查的知识点是由y=Asin(ωx+φ)的部分图象确定其解析式,y=Asin(ωx+φ)的单调性,其中求出y=Asin(ωx+φ)解析式是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①已知函数f(x)=2x+2-x,则y=f(x-2)的图象关于直线x=2对称;
②平面内的动点P到点F(-2,3)和到直线l:2x+y+1=0的距离相等,则点P的轨迹是抛物线;
③若向量
a
b
满足
a
b
<0,则
a
b
的夹角为钝角;
④存在x0∈(1,2),使得(x02-3x0+2)e x0+3x0-4=0成立,
其中正确命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC,△CDE都为等边三角形,连接AE,BE,取BE的中点为O,连接AO,并延长AO到F,使BF=AE,求证△BDF为等边三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C的方程为y=ax2(a<0),过抛物线C上一点P(x0,y0)(x0≠0)作斜率为k1、k2的两条直线分别交抛物线C于A(x1,y1)、B(x2,y2)两点(P、A、B三点互不相同),且满足k2+λk1=0(λ≠0且λ≠-1).
(1)求抛物线C的焦点坐标和准线方程;
(2)当λ=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标y1的取值范围;
(3)设直线AB上一点M,满足
BM
MA
,证明线段PM的中点在y轴上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(-1,2),B(2,8),
(1)若
AC
=
1
3
AB
DA
=-
2
3
AB
,求
CD
的坐标;
(2)设G(0,5),若
AE
BG
BE
BG
,求E点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C过点A(1,
3
2
),两焦点为F1(-
3
,0)、F2
3
,0),O是坐标原点,不经过原点的直线l:y=kx+m与椭圆交于两不同点P、Q.
(1)求椭圆C的方程;     
(2)当k=1时,求△OPQ面积的最大值;
(3)若直线OP、PQ、OQ的斜率依次成等比数列,求直线l的斜率k.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个圆C和y轴相切,圆心在直线l1:x-3y=0上,且在直线l2:x-y=0上截得的弦长为2
7
,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,AD∥BC,SA⊥CD,AB⊥平面SAD,M是SC的中点,且SA=AB=BC=2,AD=1.
(1)求证:DM∥平面SAB;
(2)求四棱锥M-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是边长为3的正方形,平面PCD⊥底面ABCD,E是PC的中点.
(Ⅰ)求证:PA∥平面BDE;
(Ⅱ)若PD=PC=
2
2
DC,求证:平面PDA⊥平面PCB;
(Ⅲ)若侧棱PD⊥底面ABCD,PD=4.求△PAD以PA为轴旋转所围成的几何体体积.

查看答案和解析>>

同步练习册答案