精英家教网 > 高中数学 > 题目详情
4.若函数f(x)=x+$\frac{(2a-1)x+1}{x}$为奇函数,则a=$\frac{1}{2}$.

分析 根据函数奇偶性的性质建立方程关系进行求解即可.

解答 解:f(x)=x+$\frac{(2a-1)x+1}{x}$=x+(2a-1)+$\frac{1}{x}$,函数的定义域为{x|x≠0},
∵f(x)是奇函数,
∴f(-x)=-f(x),
则-x+(2a-1)-$\frac{1}{x}$=-(x+(2a-1)+$\frac{1}{x}$)=-x-(2a-1)-$\frac{1}{x}$,
即2a-1=-(2a-1),
则2a-1=0,得a=$\frac{1}{2}$,
故答案为:$\frac{1}{2}$

点评 本题主要考查函数奇偶性的应用,根据奇函数的性质建立方程关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1,F2,两条渐近线分别为l1,l2,过F1作F1A⊥l1于点A,过F2作F2B⊥l2于点B,O为原点,若△ABO是边长为$\sqrt{3}$的等边三角形,则双曲线的方程为(  )
A.$\frac{x^2}{21}-\frac{y^2}{9}=1$B.$\frac{x^2}{9}-\frac{y^2}{21}=1$C.$\frac{x^2}{3}-\frac{y^2}{9}=1$D.$\frac{x^2}{9}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.以下5个命题,其中真命题的个数有(  )
①从等高条形图中可以看出两个变量频数的相对大小
②两个随机变量相关性越强,则相关系数r的绝对值越接近于1;
③在回归直线方程$\hat y$=0.2x+12中,当解释变量x每增加一个单位时,预报变量$\hat y$平均增加0.2个单位;
④若K2的观测值为k=6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;
 ⑤残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,带状区域的宽度越窄,说明拟合精度越高.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在如图所示的平面直角坐标系中,已知点A(1,0)和点B(-1,0),|$\overrightarrow{OC}$|=1,且∠AOC=x,其中O为坐标原点.
(1)若x=$\frac{3π}{4}$,设点D为线段OA上的动点,求|$\overrightarrow{OC}$+$\overrightarrow{OD}$|的最小值;
(2)若x∈(0,$\frac{π}{2}$),向量$\overrightarrow m=\overrightarrow{BC}$,$\overrightarrow n=(1-cosx,sinx-2cosx)$,求$\overrightarrow m•\overrightarrow n$的最小值及对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50…,则此数列第20项为(  )
A.180B.200C.128D.162

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某舰艇在A处测得遇险渔船在北偏东45°方向上的C处,且到A的距离为10海里,此时得知,该渔船沿南偏东75°方向,以每小时9海里的速度向一小岛靠近,舰艇的速度为21海里/小时,则舰艇到达渔船的最短时间是$\frac{2}{3}$小时.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题正确的是(  )
(1)若命题“p或q”为真命题,则命题“p”和命题“q”均为真命题;
(2)命题“?x∈R,x2+1>3x”的否定是“?x∈R,x2+1≤3x”;
(3)“x=4”是“x2-3x-4=0”的必要不充分条件;
(4)命题“若m2+n2=0,则m=0且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”
A.(2)(3)B.(1)(2)(3)C.(2)(4)D.(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=tan $\frac{x}{2}$是(  )
A.周期为2π的奇函数B.周期为$\frac{π}{2}$的奇函数
C.周期为π的偶函数D.周期为2π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.用反证法证明命题“a,b∈R,a+b=0,那么a,b中至少有一个不小于0”,反设的内容是假设a,b都小于0.

查看答案和解析>>

同步练习册答案